
Commun. Comput. Phys.
doi: 10.4208/cicp.020215.150515sw

Vol. 18, No. 3, pp. 808-830
September 2015

COMPUTATIONAL SOFTWARE

PVFMM: A Parallel Kernel Independent FMM for

Particle and Volume Potentials

Dhairya Malhotra∗ and George Biros

The University of Texas at Austin, Austin, TX 78712.

Received 2 February 2015; Accepted (in revised version) 15 May 2015

Abstract. We describe our implementation of a parallel fast multipole method for eval-
uating potentials for discrete and continuous source distributions. The first requires
summation over the source points and the second requiring integration over a con-
tinuous source density. Both problems require O(N2) complexity when computed di-
rectly; however, can be accelerated to O(N) time using FMM. In our PVFMM software
library, we use kernel independent FMM and this allows us to compute potentials for
a wide range of elliptic kernels. Our method is high order, adaptive and scalable. In
this paper, we discuss several algorithmic improvements and performance optimiza-
tions including cache locality, vectorization, shared memory parallelism and use of
coprocessors. Our distributed memory implementation uses space-filling curve for
partitioning data and a hypercube communication scheme. We present convergence
results for Laplace, Stokes and Helmholtz (low wavenumber) kernels for both particle
and volume FMM. We measure efficiency of our method in terms of CPU cycles per
unknown for different accuracies and different kernels. We also demonstrate scala-
bility of our implementation up to several thousand processor cores on the Stampede
platform at the Texas Advanced Computing Center.

AMS subject classifications: 31-04, 35J05, 65Y05, 65Y20

Key words: Fast multipole method, N-body problems, potential theory.

Program summary

Program title: Parallel Volume Fast Multipole Method (PVFMM)

Nature of problem: solving constant coefficient elliptic PDEs and N-body problems

Software licence: GPL 3.0

∗Corresponding author. Email addresses: dhairya.malhotra@gmail.com (D. Malhotra), gbiros@acm.org (G.
Biros)

http://www.global-sci.com/ 808 ©2015 Global-Science Press



D. Malhotra and G. Biros / Commun. Comput. Phys., 18 (2015), pp. 808-830 809

CiCP scientific software URL:

Distribution format: .gz

Programming language(s): C/C++

Computer platform: Any

Operating system: Unix-like operating systems

Compilers: icpc, g++

RAM: at least 1GB

External routines/libraries: MPI, OpenMP, BLAS, LAPACK, FFTW3

Running time:

Restrictions:

Supplementary material and references: Software homepage, http://pvfmm.org

Additional Comments:

1 Introduction

Many problems in physics and engineering require computing potentials for discrete or
continuous source distributions. In this paper, we focus on potentials related to constant
coefficient elliptic PDEs. Applications include computing gravitational interactions in
astrophysics [12, 18, 24], fluid flows [7, 12, 17], electro-magnetic and acoustic scattering
[3,22] and many others [6,10,11]. Particle N-body problems also arise from discretization
of boundary integral representation [21, 28]. Volume potentials are required for solution
of elliptic PDEs. Several applications discretize volume potential problems in to particle
N-body problems with mollification of the kernel function [17]. However, these methods
are low order. Our implementation uses a high order adaptive method of [15], which
is designed for computing volume potentials. The method uses piecewise Chebyshev
polynomials on an adaptive octree to represent the continuous source distribution and
also the final potential. Our particle and volume FMM is based on the kernel independent
formulation of [26] and this allows us to solve problems for a wide range of kernels
corresponding to constant coefficient elliptic PDEs. In this paper, we present results for
Laplace, Stokes and low-frequency Helmholtz (wavenumber < 20). We support free-
space and periodic boundary conditions. Our method can also be used to solve variable
coefficient elliptic PDEs by solving the integral formulation using iterative linear solvers.
The details of that work can be found in [20].


