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Abstract. We develop numerical methods for the simulation of laden-flows where par-
ticles interact with the carrier fluid through drag forces. Semi-Lagrangian techniques
are presented to handle the Vlasov-type equation which governs the evolution of the
particles. We discuss several options to treat the coupling with the hydrodynamic
system describing the fluid phase, paying attention to strategies based on staggered
discretizations of the fluid velocity.
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1 Introduction

This paper is concerned with the numerical simulation of dilute suspensions. This study
is motivated by many applications ranging from industrial processes to natural flows.
For instance, such flows are involved in internal combustion engines and the improve-
ment of their performance need both modeling and computational efforts [50, 56, 71].
The problem is also relevant to fluidized beds [6] where particles are suspended in the
fluid stream, in order to promote contacts and exchanges between the particles and the
fluid. Similar questions arise from nuclear energy security, and weapons physics pur-
poses [3,54]. Other applications cover the dynamics of biomedical sprays [3,4,30,55], en-
vironmental studies on pollutant transport [27,57,58,61,69], the formation of sandstorms,
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sediment transport, the “white water” produced by breaking waves [51], dispersion of
ash during volcanic eruptions [59], powder-snow avalanches [15], etc. Such complex
flows involve a wide range of length and time scales and different modeling approaches
have been developed.

We focus this study to models that adopt a statistical description of the dilute phase
through the distribution function f (t,x,v) of the particles in phase space. Here and be-
low, x and v are independent variables that stand for the position and velocity variables,
respectively, while t represents time. In this modelling, at any position both phases can
be present, and, assuming that particles are spherically shaped with typical radius rd,
4
3 πr3

d

∫

f (t,x,v)dv defines the local volume fraction occupied by the particles. The parti-
cle distribution function obeys the collisionless Vlasov equation (or Williams equation)

∂t f +∇x ·(v f )+∇v ·(F f )=0. (1.1)

(Note that, since x and v are independent variables, ∇x ·(v f )= v·∇x f .) It is coupled to
a hydrodynamic system describing the evolution of the carrier phase through the drag
force term F . Denoting by (t,x) 7→ u(t,x) the velocity field of the carrier fluid, the drag
force is proportional to the relative velocity

F =D (u−v).

The coefficient D (which has the homogeneity of the inverse of a time) is given as a
function of |v−u|, the expression of which might be quite complicated, depending on
the physical characteristics of the flows [53,56]. Our ideas extend to the general case, but
for the sake of simplicity, we shall restrict the description of the scheme to the simple
linear case where D is a positive constant (Stokes flows). In this case, its expression is

D= 9µ

2r2
d̺d

, where µ stands for the dynamic viscosity of the fluid, and ̺d the mass per unit

volume of the particles (see [18] and the references therein). In the momentum equation
that prescribes the evolution of the velocity u, we find a source term that accounts for the
drag force exerted by the particles on the fluid:

S(t,x)=md

∫

D f (t,x,v) (v−u(t,x))dv=md

∫

v ∇v ·
(

F f (t,x,v)
)

dv,

where md = 4
3 πr3

d̺d stands for the mass of the particles. (For Stokes flows note that
mdD=6πµrd.) The difficulty for the analysis and the numerical simulation can be ranked
depending on the other modelling assumptions. In particular we can distinguish the fol-
lowing situations:

• We can consider the carrier fluid as compressible or incompressible, inviscid or vis-
cous. It leads to a huge variety of PDEs systems, with quite distinct features. Here,
we will restrict to compressible and inviscid flows, described by standard Euler
equations, with a mere state law for defining the pressure. Furthermore, we will


