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Abstract. The computation efficiency of high dimensional (3D and 4D) B-spline in-
terpolation, constructed by classical tensor product method, is improved greatly by
precomputing the B-spline function. This is due to the character of NLT code, i.e. only
the linearised characteristics are needed so that the unperturbed orbit as well as values
of the B-spline function at interpolation points can be precomputed at the beginning of
the simulation. By integrating this fixed point interpolation algorithm into NLT code,
the high dimensional gyro-kinetic Vlasov equation can be solved directly without op-
erator splitting method which is applied in conventional semi-Lagrangian codes. In
the Rosenbluth-Hinton test, NLT runs a few times faster for Vlasov solver part and
converges at about one order larger time step than conventional splitting code.
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1 Background

In magnetic fusion plasmas or laser-plasmas, it is important to understand the dynamics
of charged particles. In kinetic theory, the plasma is described by the distribution function
f (x,v,t) in the six dimensional phase space (x,v), with x,v the position and velocity of
the particle. Due to the strong toroidal magnetic field in a tokamak, the phase space
can be simplified to five dimensional phase space by using gyro-center coordinates Z=
Z(X ,v‖,µ), with X the position of gyro-center, v‖ the parallel velocity and µ the magnetic
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moment. In the absence of collisions, the particle distribution satisfies the gyro-kinetic
Vlasov equation,

dF

dt
=

∂F

∂t
+Ẋ

∂F

∂X
+ v̇‖

∂F

∂v‖
=0. (1.1)

Here, the total time derivative d
dt in Eq. (1.1) is taken along the gyro-center orbit in phase

space, which indicates that the distribution function F is a constant along its character-
istics. The electromagnetic fields are computed self-consistently through the Maxwell or
Poisson equations.

There are three methods to solve the Vlasov equation, the PIC (Particle-In-Cell), the
Eulerian, and the semi-Lagrangian methods. The PIC method [1–3] is based on a La-
grangian description. The plasma is described by a statistical sampling of macro-particles.
Their trajectories are followed in time with electromagnetic fields computed on mesh
nodes. In order to get the sources for the computation of the electromagnetic field, the
macro-particles are deposited into mesh nodes. The PIC method has a good conservative
property, but suffers from sampling noise. The Eulerian method [4–6], which discretizes
the Vlasov equation on mesh of the phase space, can offer a good alternative to the PIC
method. This method is usually computationally more demanding than the PIC method
and has the CFL restriction on the time step, while it does not suffer from the statisti-
cal sampling noise faced by the PIC method. The semi-Lagrangian method [7–9] takes
advantage of both the Lagrangian and the Eulerian approaches. It allows a relatively
accurate description of the phase space through using a fixed mesh and avoids the tra-
ditional step size restriction through using the invariance of the distribution function
along the trajectories. In standard semi-Lagrangian method, particles at mesh nodes are
advanced backward in time. The distribution function F(tn+1) at mesh nodes is interpo-
lated by F(tn) at previous time step. In order to avoid the high dimensional interpolation,
the high dimensional Eq. (1.1) is transformed into a few 1D or 2D equations by operator
splitting [10, 11]; an example of this operator splitting semi-Lagrangian method is the
GYSELA code [8, 9]. However, the operator splitting can’t recover Vlasov equation com-
pletely and brings error. This will introduce artificial dissipation to the semi-Lagrangian
simulation. There is also a forward semi-Lagrangian method which avoids operator split-
ting. The characteristic curves are advanced in time and a deposition procedure on the
phase space grid, similar to the procedure used in PIC methods for the configuration
space only, is used to update the distribution function. It enables the use of large time
steps and recovers a good global behavior, but it is less accurate than the classical back-
ward semi-Lagrangian method [12].

The interpolation algorithm in these three methods are different. In the PIC and the
forward semi-Lagrangian methods, data at regular mesh nodes are interpolated from
data at irregular points through the usual deposition technique (“scattering” procedure),
is shown in Fig. 1(b). In the backward semi-Lagrangian method, data at irregular points
are interpolated from data at regular mesh nodes through using the spline interpolation
method, is shown in Fig. 1(a). However, only 1D and 2D spline interpolation are widely


