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Abstract. A new finite element (FE) field solver has been implemented in the gyroki-
netic toroidal code (GTC) in attempt to extend the simulation domain to magnetic axis
and beyond the last closed flux surface, which will enhance the capability the GTC
code since the original finite difference (FD) solver will lose its capability in such cir-
cumstances. A method of manufactured solution is employed in the unit fidelity test
for the new FE field solver, which is then further verified through integrated tests with
three typical physical cases for the comparison between the new FE field solver and
the original finite difference field solver. The results by the newly implemented FE
field solver are in great accord with the original solver.
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1 Introduction

In the research of plasma physics, simulations have always served as an effective tool
due to the complexity of theoretical analysis and the high cost of experiments. After
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several decades of fast development in the capability of high-performance-computing, it
has become feasible to conduct massively parallel simulations to investigate more mean-
ingful and complex physics processes using equilibrium and profiles close to realistic
discharges in fusion plasmas. Along with the progress in computing power, a set of gy-
rokinetic theory [1-11] have been proposed and established to construct a set of simple
theoretical and numerical models by eliminating the fine-scale gyro-phase dependence
through gyroaveraging, which reduces the original phase space dimensionality from six
to five. This not only assists the profound comprehension of low frequency physics, such
as the anomalous transport that is critical for the magnetic fusion, but also facilitates the
development and application of massively parallel simulation codes.

As one of the existing well benchmarked gyrokinetic codes, the gyrokinetic toroidal
code (GTC) [10,12] is built upon the first-principles and adopts an efficient low-noise per-
turbative 6 f simulation method. The particle-in-cell (PIC) scheme is also utilized so that
particles are treated with a Lagrangian scheme while fluid moments and field informa-
tion are calculated with an Eulerian scheme. The capability of GTC has been extensively
expanded and verified to deal with a wide range of physical problems, which include
neoclassical and turbulence transport [13,14], energetic particle transport by microturbu-
lence [15, 16], Alfven eigenmodes [17-20], radio frequency heating [21], static magnetic
island [22] and current-driven instabilities [23,24].

GTC employs the magnetic flux coordinate system (1,6,() [25], where ¢ is the poloidal
magnetic flux, 6 is the poloidal angle and  is the toroidal angle. The introduction of such
a system makes it convenient to decompose a vector into components parallel and per-
pendicular to the direction of the magnetic field, and to separate the rapid particle motion
along the magnetic field lines from the slow motion across the lines, which promotes the
simplicity in theory analysis and efficiency in numerical simulation. Originally, GTC
focused on the physics of microturbulence and the transport in the core area that are gen-
erally located in between a belt region away from the magnetic axis and Scrape-Off layer
(SOL). When global modes and instabilities, such as kink mode and tearing mode, are
considered, the on-axis region cannot be ignored and starts playing an important role.
Meanwhile, the physics in the SOL region, a subregion of the halo, is the key for a holistic
understanding to the plasma exhaust problem to ensure that the material surfaces will
survive harsh plasma conditions and not interfere with core plasma in a magnetic fusion
reactor. In order to extend the physics capabilities to the on-axis and SOL regions while
improving numerical properties and avoiding the singularities naturally held by the con-
centric curvilinear coordinate systems, the finite element (FE) method is introduced and
implemented in GTC [26] to replace the current on-axis solution which is simply an ex-
trapolation of the gyrokinetic Poisson equation solution [23] to the magnetic axis.

The outline of this paper is as follows. In Section 2, equilibrium data setting and
the particle-field interaction loop are introduced together with the related computing
meshes. In Section 3, a brief introduction to the original finite difference (FD) Poisson
solver is presented and the discrete form of the FD Poisson equation is demonstrated. In
Section 4, the implementation of the finite element solver is introduced. In Section 5, the
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accuracy of the FE solver is first verified and then a few typical cases are carried out in
comparison to the old solver. In Section 6, a discussion is given.

2 Computing meshes in GTC

GTC, which is originally written in FORTRANDO90, is one of the most widely used fu-
sion codes in the magnetically confined fusion simulation community. GTC is the key
production code for many multi-institutional collaborative research centers, projects and
programs sponsored by, for example but not limited to, U.S. Department of Energy (DOE)
Scientific Discovery through Advanced Computing (SciDAC) project and the National
Special Research Program of China for ITER (International Thermonuclear Experimental
Reactor). GTC has been growing from a single-developer and specific-problem code to a
prominent code through continuously extending its capabilities for new physics by many
independent users and contributors around the world. GTC also employs a multi-level
hybrid programming in MPI, OpenMP and OpenACC/CUDA so that it can take advan-
tage of the hardware hierarchy of modern massively paralleled computers and reach a
scaling up to millions of conventional CPU cores and heterogeneous accelerating devices
such as NVIDIA GPU and Intel Xeon Phi chips.

As a gyrokinetic particle-in-cell [27,28] code, GTC tracks individual charged marker
particles in a Lagrangian frame in continuous phase-space [10,11], whereas the moments
of particle distribution of different species (thermal ion, thermal electron, fast ion, fast
electron, etc.) are simultaneously computed on a stationary Eulerian field mesh. This
field mesh is also used to interpolate the local electromagnetic fields at the marker parti-
cle positions in phase-space. The trajectories of charged marker particles are calculated by
integrators of the equations of motion in the self-consistent electromagnetic fields com-
puted on the field mesh. The number density and current density carried by each marker
particle is then projected to the field mesh through interpolations. The moments of the
distributions of species, such as number density, charge density and current density, are
then calculated by accumulating the projected quantities of marker particles. The elec-
tromagnetic fields are then solved on mesh grids using proper combinations of Poisson
equation, Ampere’s law, Faraday’s law and force-balance equations with finite difference
methods [26] and finite element methods which will be discussed in this paper.

Prior to the main iteration loop, which is introduced in the previous paragraph, the
equilibrium and profiles are set up on the field-aligned mesh in the initialization part of
the code from either analytical profiles or the numerical data, taken from realist experi-
mental discharges through Equilibrium Fitting (EFIT) [29] for example. In the latter case,
the numerical data is transformed to a simple intermediate spline mesh, which is used to
construct the field-aligned mesh in turn. As shown in Fig. 1, the spline mesh has a uni-
form grid size in the radial direction and the same angle in poloidal direction while the
field-aligned mesh has the same length in radial direction and all field-aligned grids at
different radial positions have similar arc lengths. Usually, the grid of these two meshes



658 H. Feng et al. / Commun. Comput. Phys., 24 (2018), pp. 655-671

(b)

Figure 1: Two different meshes in GTC. Panel (a) is the spline mesh, panel (b) is the field-aligned mesh.

are totally different in both radial and poloidal directions. Thus a second-order polyno-
mial interpolation based on the equilibrium data on the spline mesh is required for the
calculation of the corresponding values on the field-aligned mesh, which are used in the
main loop. For an arbitrary one dimensional variable f(x), Eq. (2.1) gives the B-spline
technique,

F(xi)=f(xa) +fD (xa) Ax+ fP) (xy) (Ax)2. 2.1)

Here, x; is the position of the ith grid point on field-aligned mesh and x, is the position of
the ath grid point on the spline mesh that is the nearest to but not larger then x;. Ax stands
for the gap between x; and x,, Ax=x;—x,. f(1) and f(?) are coefficients related to the first
and second order differential in x direction respectively, and are calculated through finite
difference method on the spline mesh. If the dimensionality increases to two, adding
the poloidal direction, then there become eight differential-related coefficients. For 3D
problems, the number of interpolating coefficients increases to twenty-six.

After equilibrium profiles are determined on the field-aligned mesh, initial particles
are randomly sampled in the gyrocenter coordinate system. Then the main loop of PIC
scheme begins. To illuminate the procedure, we choose a small area of the field-aligned
mesh for assistance, shown in Fig. 2. In gyrokinetic systems, particle motion is replaced
by gyrocenter motion through gyroaveraging. The motions of gyrocenters are governed
by weight equations [10]. For gyrocenter f,,, the gyroaveraging process is carried out by
four points of f,, fy, fc, and f; [2]. The values at these averaging points are calculated via
interpolation of surrounding grids. For example, f. is calculated through cy, ¢, ¢3, and c4.
Given all the gyroaveraged drive terms caused by field, gyrocenter f¢, is then pushed,
resulting in renewed information such as position, velocity, and distribution function.
Then the updated gyrocenter f;, information is distributed back onto the field-aligned
meshes via the same interpolation procedure. The total distributed information is a sum-
mation of all gyrocenters. With accumulated moments of gyrocenter distribution on the
mesh, the perturbed field information is evolved in turn, demonstrated by field equa-
tions, which together with motion equations and weight equations of particles, complete
the full loop of particle-field interactions.
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Figure 2: The PIC and gyroaveraging technique in GTC code.

This whole loop is performed in a field-aligned coordinate, with a finite difference
method adopted for solving the field equation, which will be further discussed in the
following section. On the contrast, the newly implemented FE solver creates a branch of
the loop for FD solving routine of the field equation. The calculation in FE solver is still
on the field-aligned mesh, but mapping it to a new Cartesian coordinate (X,Z), where
X stands for distance from the considered point to the cross-section axis, and Z is the
position in the vertical Z direction, automatically removes the singularity problem. Next,
the perturbed field solution on the mesh obtained by the FE solver, is used again in the
field-aligned coordinate for the calculation of gyrocenter advancing, which eventually
encloses the PIC circle.

3 Poisson equation and Laplacian operator

In this section, the gyrokinetic Poisson equations for both electrostatic and electromag-
netic cases are listed. The different forms of Poisson equations arise from the application
of a hybrid-kinetic model [30], the main idea of which is to divide electron response into
a dominant adiabatic part and a high-order kinetic perturbation for better numerical per-
formance. Later the finite difference method aimed at solving the Poisson equation in
GTC under the magnetic flux coordinate [26] is briefly introduced.

3.1 The form of Poisson equation

We start from the gyrokinetic Poisson equation [2],

72 s - _
Z s’;:O ((P_(PS):ZZSnS_nEI

segy segy
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where index s stands for particle species governed by gyrokinetics equations, Zs
stands for the charge number for species s, 7i; stands for the gyrocenter density

= [dZ5(R+p—x)6fs(Z), ¢s stands for the second-gyro-averaged potential ¢s =
1/”05 ) [dZ6(R+p—x)p(R,pfos(Z)) with §(R,p) being the gyroaveraged potential
<,b(R p) = (1/2m) [dedxé(R+p—x)$(x), and n, stands for the electron response which
is expanded into an adiabatic part and a nonadiabatic part 1, = n£°) —ngl). By using the
Pade approximation, the representation of the second-gyroaveraged potential in Fourier
space can be written as

J_ps
1+k% p2

p—p=(1-To(Kp2)) P~ ¢.

After transforming it back to real space, we obtain

Z2%ep? NosMs _
lTipl Z 0 : Vi¢:_(1_p12Vi) (Zns—ne>.

segy i segy

(0)

Since the adiabatic electron response in the electrostatic scenario has the form n,” =
enpe¢p/ T,, thus it can be moved from the right side of the equation to the left side, re-
sulting in a diagonal term in the Laplacian operator. This operation leads to different
expression forms of Poisson equations for electrostatic and electromagnetic situations, as
shown below,

lee NosMs ~ €1ge 272/ 1 = (1)
(T‘ Z " + Te> 4’ p;i Vi Z”z <1—|—l> nj—ne’ |,

1 segy segy segy
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where V7 is the result of adding the diagonal term related to the adiabatic electron re-
sponse to Vi, and [ is defined as

I eneo Z%e Z s Mg .
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Note that the solution of partial differential equation which has the form AV2X=V?B+C
can be interpreted as the sum of two parts X = X;+ X5, where X; =B/ A and X is the
root of the equation AV2X =C, so the equations that need to be solved actually take the
following forms,
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Here Eq. (3.1) is for the electrostatic case while Eq. (3.2) is for the electromagnetic case.

3.2 Laplacian operator solver in GTC

A finite difference method is employed for solving the partial differential field equations
described by Eq. (3.1) and Eq. (3.2). So in this section, the discretization technique for the
Laplacian operator under the field-aligned coordinate [26] is demonstrated. Generally,
the Laplacian operator can be expressed as

2 (4 J
V=g (19 )
where « (or B) denotes an arbitrary direction of the three basis vector. | is the Jacobian.
Note that the Einstein’s summation convention is spontaneously applied here and after.
It is convenient to define a matrix tensor ggagﬁ =V*-VZP. Then we link the arbitrary
curvilinear coordinate (&!,&2,&3) to the magnetic flux coordinate (1,0,7). For simulation
efficiency purpose [31], a new field-aligned coordinate (,6y,{o) is introduced by apply-
ing the following transformation, 8g=60—_/q, {o=C. Considering the gyrokinetic ordering
k1 >k, the perpendicular Laplacian operator can finally be expressed as follows,

2 Py po
V2 f— gz/npaf+ 2gh0 T o°f <g99+g§§/q) f+1<8]g +a]g >%

o2 9oy 902 T\ oy 0y ) oyp
Jg¥?  9Jg"\ of
+7< ! + 20, >E (3.3)

From (3.3), it is straightforward to recognize that the following efforts should be laid
in the discretization of the operators 9/9y, 3/90,, 9*/9y?, 9*/903, and 9% /9yPdf, in the
poloidal cross-section, as shown in Fig. 3. Here an 11-point interpolation method is used.
Taking point 6 in Fig. 3(b) for an example, 6y differential is calculated by point 5 and 7 on
the same flux surface i while ¢ differential is calculated by point « on the inner surface
i—1 and B on the outer surface i+1. However, « and f are usually not the mesh grid, so
that the value at « is obtained via the interpolation of point 1, 2, 3, and 4, while § from
point 8,9, 10 and 11.

4 Implementation of the FE solver

Apart from the finite difference method mentioned above, finite element method is an-
other numerical technique to obtain a solution for a partial differential problem, which
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Figure 3: Discretization method in the poloidal cross-section.

originates from the variation method. In our FE scheme [32-34], we start from the equa-

tion with the form
V- [fa(x) Vu(x)] = fo (x)u(x) = fe(x) (4.1)

so that it covers the equations ready to be solved, described by (3.1) and (3.2), as two
special cases. Multiplied by a testing function ¢(x), and integrated over the domain
with the Dirichlet boundary condition, (4.1) can be rewritten as

/Vq) [fa(x) Vu(x ds+/ u(x)]ds:—/ﬂq)(x)fc(x)ds. 4.2)

Consider a standardized triangle element D*(r,s) = {(r,s)| —1<r,s<1;r+s<0}. Super-
script e indicates the sequential index of the triangle and (r,s) is the position of a point
within the element according to the following mapping,
1 1
e L T L
2 x 2
where x is the physical position of the point, v!, v2, v3 are the coordinates of the vertices

of the element. An arbitrary variant u(r,s) can be expanded to a linear combination of
polynomials ¢;; € DF = {r's/|0<i+j<p},

M(I’,S): Z ﬁjk¢jk(rrs)/ with ¢ij(7,s):\/(2i+1)(2i+j+1) PP’O(—%)PJZHLO(S),

0<j+k<p

where Po? (x) is the nth-order Jacobi Polynomial. Note that for any pair of (,]), it is con-
venient to use one subscript k to rewrite the basis function ¢ = ¢;;. Define the Vander-
monde matrix Vj;=¢;(r;,s;) for the ith node. If the matrix is well conditioned, a function,
whose values are known at nodes, can be uniquely expressed as

= Y V:'u(ris), with N=(p+1)(p+2)/2.
1<j<N
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Subsequently, we can obtain

N N
= Zﬁkgbk(x) = Z(Pk Z 7’],5]
k=0 k=0

By adopting the polynomial representations of the test function ¢(x) and the targeted
function u(x), (4.2) can be simplified to the form

A-u=b, (4.3)
with A= [ Vo(x)-[fs(0Vo(x)lds+ [ @00 [fs(x)¢()]ds,
b=— [ p(x)f(x)ds

Furthermore, integral and differential in (4.3) can also be discretized on grid base,

N N N
]ZZZﬂ ]z gk’
i=0j=0k=0

N

gj;(rz,s ):Z(:)( ¥Dij+sxD; >f(rj’sj)'
f=

8 L ry lts,D )f(rj,sj),

where DJ; and Dj; are defined as D;jzzyﬂaq;k(r,s) /9rVy; and D =YL, 9¢y(r,5) /0sV;; !
with ka standing for the inverse Vandemonde matrix. ] is the Jacobian of the transfor-

mation from normal Cartesian coordinate x to the triangle coordinate (7,s). Any choice of
a straight-lined triangle element will result in a Jacobian independent of coordinate (7,s),
as employed in this paper. In real calculations, test function ¢ is chosen to be the basis
function ¢.

In order to implement the FE solver into the GTC code, an interface between the
solver and GTC code should be constructed, which contains two major parts, the physical
coordinates of each grid and the coefficients in Eq. (4.1). Therefore at the very beginning,
we need to acquire the positions of grid points. Here a simple transformation from the
field-aligned coordinate to the Cartesian coordinate is carried out,

x=rcos(6p), z=rsin(bp), (4.4)



664 H. Feng et al. / Commun. Comput. Phys., 24 (2018), pp. 655-671

%
g
g

K
J
AN
0L
X/
A
KL
=

A

)

Figure 4: Mesh generated around the magnetic axis.

where r is the radial position of each point and can be obtained through its relation with
the toroidal magnetic flux y; that reads i; = Bor? /2 by definition, in addition to the prop-
erty dy/dp =1/q(y). Given grid points information acquired above, triangle elements
are generated and labeled with sequential indexes for calculation. Fig. 4 gives a clear illu-
mination of the mesh generated around the magnetic axis area. Next, the determination
of the form of the coefficients f,(x), f,(x), and f.(x) emerged in (4.1) is considered. By
simply comparing the forms of (4.1) with (3.1) and (3.2), we can reach that,

Z?e NosMs  enge \ o 720
fa=—| 2= 4 07, __Zi Noshts >
g Ti SGXg:y m; T, ' fa Ti SGZg:y m; Pir
en
be—Teoe, or < fp=0, (4.5)
(! - () ﬂz(Zﬁs—ne),
fc B <1+l> <s€zg:yns e ) ’ s€gy

where the left equations are for electrostatic cases and the right for electromagnetic cases.
By now, we have successfully built the interface between the solver and the GTC source
code through (4.4) and (4.5).

5 Verification of the FE solver

The verification process of the newly implemented FE field solver is carried out through
two steps. First a test function n(r,0y) is carefully manufactured so that the equation

V2¢:n, (5.1)
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with a zero boundary condition at both inner and outer boundaries, holds a simple an-
alytic solution, to which the results calculated by both the FE solver and original solver
can be compared. Secondly, three typical cases that consist of ion temperature gradient
(ITG) mode, kink mode and fast-electron driven beta-induced alfven eigenmode (e-BAE)
are chosen to be simulated via the FE solver and the original solver as well for bench-
marking.

5.1 Manufactured function verification

Choose ¢ =sin[27t(r—rg)/(r1—70)]cos(6p), so that the source term on the right side of
(5.1) can be set as n = V? (¢), with V3 =92/9r*+9/ror+(1/r*+1/¢*X?)9*/96} and
X=rcos(8)/Ry. Here, only the cylinder geometry is taken into consideration for simplic-
ity. With zero boundary condition, the analytic solution is @ayarytic = sin[27t(r—ro) / (r1—
r0)]cos(6p). Then compare it with the numerical solutions of both the original solver and
the FE solver. As Fig. 5 shows, panel (a) and (c) are the result of the FE solver and the
original solver, while panel (b) and (d) stand for the difference from the analytic solution
for each solver. Since the calculation is of single precision, where results with an error
level of 10~* can be regarded as satisfactorily accurate, it is safe to conclude that both the
FE solver and original solver can give a solution of a very good accuracy, with a 0.02%
error for FE solver and a 0.08% error for the original solver. The radial profiles of three
solutions at 6p =0 are also displayed in Fig. 6, showing great agreement among the three.
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Figure 5: (Color online) Contour of the results of original solver and FE solver. Panel (a) and (c) are the results
of FE solver and original solver respectively. Panel (b) and (d) denote the difference between the analytic
solution and the FE, original solution.
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Figure 6: (Color online) Radial solution comparison between analytic, FE solver and original solver results.

5.2 Physics case verification

In this section, three typical physical cases are selected to cover a wide range of physi-
cal scenarios for the solver verification. For instance, linear ITG mode is an electrostatic
instability which contains the contribution of gyrokinetic ions and adiabatic electrons,
thus falls into the situation described by (3.1). Linear kink mode is an electromagnetic
magnetohydrodynamics (MHD) instability that expands its effective domain to the very
center near the magnetic axis where (3.2) is applicable. Meanwhile linear e-BAE is an
electromagnetic instability which consists of a rather complex combination of different
species, gyrokinetic thermal ions, fluid adiabatic thermal electrons, and drift-kinetic fast
electrons. Different cases indicate different choices and combinations of the coefficients
listed in (4.1). To investigate the results produced by each solver, comparisons are carried
out through different perspectives of poloidal cross-section mode structure and spec-
trum, growth rate, and frequency. First we consider the mode structure and spectrum.
For all comparisons from Figs. 7 to 9, upper half panels stand for FE results while the
rest half are original solver results. Since the ITG mode is electrostatic, only perturbed
potential is shown, while the rest two cases contain both perturbed potential and parallel
vector potential. The upper panel of a spectrum diagram, take Fig. 7(b1) for an instance,
gives the poloidal spectrum, and the bottom panel stands for the parallel spectrum. It
is obvious that the outcome of the two approaches is nearly identical. Following that,
calculations of growth rate and frequency of each case are carried out as well for further
comparison. Results are displayed in Table 1, which also show a high agreement between
the two solvers with errors no more than 0.7%. Note that all the results are normalized
by the ion gyro-frequency of each case.

From both the manufactured test function method and selected physical case verifi-
cations, we can draw the conclusion that the newly added FE solver in GTC code can
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Figure 7: (Color online) Comparison of mode structure and spectrum calculated by different solvers for ITG.
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Figure 8: (Color online) Comparison of mode structure and spectrum calculated by different solvers for kink.

reach a very satisfying extent of accuracy, even slightly better than the original solver,
indicated by the nearly twice smaller difference from the analytic solution in the manu-
factured test function verification. Furthermore, by comparing the computing time of all
physics cases solved by the original solver and the new FE solver, we’ve found that for
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Figure 9: (Color online) Comparison of mode structure and spectrum calculated by different solvers for e-BAE.

Table 1: Growth rate and frequency benchmarks of different physical cases. Positive frequency means the
wave propagates in the direction of electron diamagnetic drift while the negative frequency means the wave
propagates in the direction of ion diamagnetic drift.

ITG kink mode e-BAE
FE | Original | FE | Original | FE | Original
Growth rate | 4.11 414 6.79 6.77 3.57 3.60
Frequency | -5.48 -5.48 0 0 19.7 19.7

the same physics case, the total time as well as the time spent in the solver subroutine is
nearly the same when using different solver, which indicates that the FE solver has the
same efficiency as the old solver.

6 Conclusion

Starting from the Poisson equation, we have derived the equivalent form of the equations
that are ready to be solved. Next we have also introduced a new finite element method.
And through a manufactured test function and physical case verification, the accuracy
and efficiency of the newly added solver can be claimed at least as acceptable as the
original finite difference method. Finally and more importantly, we believe that, when
it comes to the problems where our future interest lies, such as the problems around the
edge and diverter areas, and the original finite difference method loses its capability, our
newly added FE solver will reveal its advantages.
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