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Abstract. Our aim in this article is to improve the understanding of the colocated finite
volume schemes for the incompressible Navier-Stokes equations. When all the vari-
ables are colocated, that means here when the velocities and the pressure are computed
at the same place (at the centers of the control volumes), these unknowns must be prop-
erly coupled. Consequently, the choice of the time discretization and the method used
to interpolate the fluxes at the edges of the control volumes are essentials. In the first
and second parts of this article, two different time discretization schemes are consid-
ered with a colocated space discretization and we explain how the unknowns can be
correctly coupled. Numerical simulations are presented in the last part of the article.
This paper is not a comparison between staggered grid schemes and colocated schemes
(for this, see, e.g., [15, 22]). We plan, in the future, to use a colocated space discretiza-
tion and the multilevel method of [4] initially applied to the two dimensional Burgers
problem, in order to solve the incompressible Navier-Stokes equations. One advantage
of colocated schemes is that all variables share the same location, hence, the possibil-
ity to use hierarchical space discretizations more easily when multilevel methods are
used. For this reason, we think that it is important to study this family of schemes.
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1 Introduction

We consider the Navier-Stokes equations in their velocity-pressure formulation and the
continuity equation written for an incompressible viscous fluid; Ω is an open bounded
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domain in R
2, for our simulations we use a rectangular domain Ω=(0,L1)×(0,L2).

For given volume forces f=( fu, fv), we look for the velocity vector u and the pressure p
such that:

∂u

∂t
−ν△u+(u·∇)u+∇p= f in Ω×[0,T], (1.1)

divu=0, (1.2)

where ν>0 is the kinematic viscosity and, in space dimension two, u=
(

u(x,y,t),v(x,y,t)
)

,
t≥0.

On the boundary ∂Ω of Ω, we impose a Dirichlet no-slip boundary condition:

u
∣

∣

∣

∂Ω

=g, (1.3)

where g=(gu,gv) is a given function defined on ∂Ω.
Traditionnally, the staggered variable arrangement was prefered to a colocated vari-

able arrangement. Indeed, the colocated arrangements have long been considered as im-
practicable since these colocated schemes were known to generate a decoupling between
the velocities and the pressure. This difficulty was subsequently resolved using appro-
priate interpolations of the fluxes (see below, e.g., (2.15)). Based on this idea, the first suc-
cessful colocated finite volume schemes were introduced in 1981 by Hsu [9], Prakash [16]
and Rhie [18]. A further advantage of colocated schemes is that they can be easily used
for complex geometries [25]. Moreover, multilevel techniques, which result in a signif-
icant reduction of computing time on fine grids, are also much easier to apply to the
colocated arrangement; this is an essential point regarding our objective to implement
multilevel methods for the Navier-Stokes equations [4]. See [15, 22] for a detailed com-
parison between staggered and colocated schemes. We intend in a subsequent work [5]
to combine the multilevel method presented in [4] with the colocated schemes described
here. For theoretical aspects of the finite volume methods, see [2].

The purpose of the present article is to describe two colocated schemes associated
with different time discretizations. For each scheme, we will study if there exists a de-
coupling between the velocities and the pressure. Then, we will comment on the numer-
ical results obtained in the case of a driven cavity. Note that the emphasis here is on the
development of the method only and therefore the driven cavity flow is not studied with
too challenging values of the Reynolds number.

In the following, the domain Ω is discretized by rectangular finite volumes of same
dimensions ∆x∆y with M∆x = L1 and N∆y = L2 (M, N are given integers). Hence, we
have MN volumes which are defined (see Fig. 1) by:

(

Kij =[xi− 1
2
,xi+ 1

2
]×[yj− 1

2
,yj+ 1

2
]
)

i=1,···,M, j=1,···,N
,

where

xi+ 1
2
= i∆x for i=0,··· ,M,

yj+ 1
2
= j∆y for j=0,··· ,N.


