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Abstract. The adaptation of Crouzeix-Raviart finite element in the context of multi-
scale finite element method (MsFEM) is studied and implemented on diffusion and
advection-diffusion problems in perforated media. It is known that the approximation
of boundary condition on coarse element edges when computing the multiscale basis
functions critically influences the eventual accuracy of any MsFEM approaches. The
weakly enforced continuity of Crouzeix-Raviart function space across element edges
leads to a natural boundary condition for the multiscale basis functions which relaxes
the sensitivity of our method to complex patterns of perforations. Another ingredient
to our method is the application of bubble functions which is shown to be instrumental
in maintaining high accuracy amid dense perforations. Additionally, the application
of penalization method makes it possible to avoid complex unstructured domain and
allows extensive use of simpler Cartesian meshes.
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1 Introduction

Many important problems in modern engineering context have multiple-scale solutions
e.g., transport in truly heterogeneous media like composite materials or in perforated me-
dia, or turbulence in high Reynolds number flows are some of the examples. Complete
numerical analysis of these problems are difficult simply because they exhaust computa-
tional resources. In recent years, the world sees the advent of computational architectures
such as parallel and GPU programming; both are shown to be advantageous to tackle re-
source demanding problems. Nevertheless, the size of the discrete problems remains big.
In some engineering contexts, it is sometimes sufficient to predict macroscopic properties
of multiscale systems. Hence it is desirable to develop an efficient computational algo-
rithm to solve multiscale problems without being confined to solving fine scale solutions.
Several methods sprung from this purpose namely, Generalized finite element meth-
ods [2], wavelet-based numerical homogenization method [10], variational multiscale
method [22], various methods derived from homogenization theory [3], equation-free
computations [18], heterogeneous multiscale method [23] and many others. In the con-
text of diffusion in perforated media, some studies have been done both theoretically and
numerically in [6,7,14,16,21]. For the case of advection-diffusion a method derived from
heterogeneous multiscale method addressing oscillatory coefficients is studied in [9].

In this paper, we present the development of a dedicated solver for solving multi-
scale problems in perforated media most efficiently. We confine ourselves in dealing
with only stationary diffusion and advection-diffusion problems as means to pave the
way toward solving more complicated problems like Stokes. We begin by adapting the
concept of multiscale finite element method (MsFEM) originally reported in [17]. The
MsFEM method relies on the expansion of the solution on special basis functions which
are pre-calculated by means of local simulations on a fine mesh and which model the mi-
crostructure of the problem. By contrast to sub-grid modeling methodologies, the mul-
tiscale basis functions are calculated from the actual geometry of the domain and do not
depend on an (often arbitrary) analytical model of the microstructure. A study on the
application of MsFEM in porous media has been done in [11], and although it could have
bold significance in geo- or biosciences, they can be applied also in different contexts, e.g.,
pollutant dispersion in urban area [4] or on similar problems which are extremely depen-
dent on the geometry of perforations but their full account leads to very time consuming
simulations. Textbook materials on the basics of MsFEM can be found in [12].

It is understood that when constructing the multiscale basis function, the treatments
of boundary condition on coarse elements greatly influence the accuracy of the method
of interest. For example, in the original work of Hou and Wu, the oversampling method
was introduced to provide the best approximation of the boundary condition of the mul-
tiscale basis functions which is also of high importance when dealing with non-periodic
perforations. Oversampling here means that the local problem in the course element are
solved on a domain larger than the element itself, but only the interior information is
communicated to the coarse scale equation. This reduces the effect of wrong boundary



