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Abstract. In this paper, a compact third-order gas-kinetic scheme is proposed for the
compressible Euler and Navier-Stokes equations. The main reason for the feasibil-
ity to develop such a high-order scheme with compact stencil, which involves only
neighboring cells, is due to the use of a high-order gas evolution model. Besides the
evaluation of the time-dependent flux function across a cell interface, the high-order
gas evolution model also provides an accurate time-dependent solution of the flow
variables at a cell interface. Therefore, the current scheme not only updates the cell
averaged conservative flow variables inside each control volume, but also tracks the
flow variables at the cell interface at the next time level. As a result, with both cell av-
eraged and cell interface values, the high-order reconstruction in the current scheme
can be done compactly. Different from using a weak formulation for high-order accu-
racy in the Discontinuous Galerkin method, the current scheme is based on the strong
solution, where the flow evolution starting from a piecewise discontinuous high-order
initial data is precisely followed. The cell interface time-dependent flow variables can
be used for the initial data reconstruction at the beginning of next time step. Even with
compact stencil, the current scheme has third-order accuracy in the smooth flow re-
gions, and has favorable shock capturing property in the discontinuous regions. It can
be faithfully used from the incompressible limit to the hypersonic flow computations,
and many test cases are used to validate the current scheme. In comparison with many
other high-order schemes, the current method avoids the use of Gaussian points for
the flux evaluation along the cell interface and the multi-stage Runge-Kutta time step-
ping technique. Due to its multidimensional property of including both derivatives of
flow variables in the normal and tangential directions of a cell interface, the viscous
flow solution, especially those with vortex structure, can be accurately captured. With
the same stencil of a second order scheme, numerical tests demonstrate that the cur-
rent scheme is as robust as well-developed second-order shock capturing schemes, but
provides more accurate numerical solutions than the second order counterparts.

AMS subject classifications: 76P05, 76N15

Key words: Third-order gas-kinetic scheme, compact reconstruction, Navier-Stokes solutions.

∗Corresponding author. Email addresses: panliangjlu@sina.com (L. Pan), makxu@ust.hk (K. Xu)

http://www.global-sci.com/ 985 c©2015 Global-Science Press



986 L. Pan and K. Xu / Commun. Comput. Phys., 18 (2015), pp. 985-1011

1 Introduction

Most computational fluid dynamics methods used in practical applications are second-
order methods. They are generally robust and reliable. For the same computing cost, the
high-order methods (order ≥ 3) can provide more accurate solutions, but they are less
robust and more complicated. There has been a surge of research activities on the devel-
opment of high-order methods for solving the Euler and Navier-Stokes equations. At the
current stage, many high-order numerical methods have been developed, including dis-
continuous Galerkin (DG), spectral volume (SV), spectral difference (SD), correction pro-
cedure using reconstruction (CPR), essential non-oscillatory (ENO), and weighted essen-
tial non-oscillatory (WENO), etc. The DG scheme was first proposed in [29] to solve the
neutron transport equation. A major development of the DG method was carried out by
Cockburn et al. [4, 5] to solve the hyperbolic conservation laws. In the DG method, high-
order accuracy is achieved by means of high-order polynomial approximation within
each element rather than by means of wide stencils, and Runge-Kutta method is used
for the time discretization. Because only flow interaction from neighboring elements is
included, it becomes compact and efficient in the application on complex geometry. Re-
cently, a correction procedure via reconstruction framework (CPR) was developed by
Wang et al. [12, 36]. This method was originally developed to solve one-dimensional
conservation laws, under the name of flux reconstruction [14, 15]. Under lifting colloca-
tion penalty, the CPR framework was extended to two-dimensional triangular and mixed
grids. The CPR formulation is based on a nodal differential form, with an element-wise
continuous polynomial solution space. By choosing certain correction functions, the CPR
framework can unify several well known methods, such as the DG, SV [23] and SD [35]
methods and lead to simplified versions of these methods, at least for linear equations.
The CPR method is compact because only immediate face neighbors play a role in up-
dating the solutions in the current cell. Therefore, the complexity of implementation can
be reduced, especially for the simulation with unstructured mesh. The main problem for
the above DG-type schemes are the robustness of the method, especially in the cases with
discontinuities. It is certainly true that the use of limiters can save the DG methods in the
flow computations with discontinuities. But, the DG method is extremely sensitive to the
limiters, because it is hard to distinguish the continuous or discontinuous solution in a
computation, especially with the changing of cell size. Sometimes, the DG method can
mysteriously get failure in a computation without clear reasons. Therefore, to pick up
the trouble cells beforehand becomes a practice in the DG method. After so many years’
research on the DG method, it gives perfect results for the continuous flow simulations,
but seems have physical problem in its weak formulation in the discontinuous case.

The ENO scheme was proposed by Harten et al. [9, 31] and successfully applied to
solve hyperbolic conservation laws and other convection dominated problems. Follow-
ing the ENO scheme, WENO scheme [10,17,22] was further developed. ENO scheme uses
the smoothest stencil among several candidates to approximate the numerical fluxes at
cell interface for high-order accuracy. At the same time, it avoids spurious oscillations


