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Abstract. The purpose of this paper is to develop and test novel invariant-preserving
finite difference schemes for both the Camassa-Holm (CH) equation and one of its
2-component generalizations (2CH). The considered PDEs are strongly nonlinear, ad-
mitting soliton-like peakon solutions which are characterized by a slope discontinuity
at the peak in the wave shape, and therefore suitable for modeling both short wave
breaking and long wave propagation phenomena. The proposed numerical schemes
are shown to preserve two invariants, momentum and energy, hence numerically pro-
ducing wave solutions with smaller phase error over a long time period than those
generated by other conventional methods. We first apply the scheme to the CH equa-
tion and showcase the merits of considering such a scheme under a wide class of initial
data. We then generalize this scheme to the 2CH equation and test this scheme under
several types of initial data.
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1 Introduction

This paper is concerned with the numerical approximation of a completely integrable
nonlinear evolutionary partial differential equation as well as one of its two-component
generalizations which often arises in various applications of shallow water wave theory.
In particular, a main goal of this paper is to develop a new invariant-preserving finite
difference scheme for both the Camassa-Holm (CH) equation and the two-component
Camassa-Holm equation (2CH) as well as showcase the merits of using invariant-preserv-
ing methods to simulate solutions to these equations under a wide class of initial data.
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1.1 The CH equation
The CH equation is given by

my+umy+2mu, =0, M=U—1Uyy, (1.1)
which is subjected to the initial data:
m(x,0) =1 (x), (12)

with periodic boundary conditions. Here, m is the momentum related to the fluid velocity
u by the one-dimensional (1-D) Helmholtz operator (see (1.1)).

Eq. (1.1) arises in a wide range of scientific applications and, for example, can be
described as a bi-Hamiltonian model in the context of shallow water waves, see [4,13,14].
It can also be used to quantify growth and other changes in shape, such as those which
occur in a beating heart, by providing the transformative mathematical path between two
shapes (for instance, see [23, page 420]). Recalling that m =u—u,,, the two compatible
Hamiltonian descriptions of the CH equation are given by

S

WX %, WX %,
mt:_(max+axm) —(Sﬂ’l Oy (1—832() 27 = 2

5 —ax—éu , (1.3)

with the following conserved quantities:
jf:/m(x t)dx %:1/ (u*+u3)dx and %:1/ (v +uuz) dx (1.4)
0 R 7 7 1 2 R X 2 2 R X . .

The CH equation is integrable with an infinite number of conservation laws, admits
soliton-like peakon solutions, and can be viewed as a model of shallow water waves.
The CH equation (1.1) can also be written as the system of equations:

Ut uty+px=0,
_ 1
p=(1-2) 1 (1450002,

where p is the dimensionless pressure or surface tension.

For this nonlocal conservation law with any initial data 1 € H'(IR), several authors
have studied the global existence of solutions, conservative or dissipative, c.f. [3,11, 33,
36,42]. Uniqueness is a delicate issue because in general the flow map has less regularity
than usually needed to justify the uniqueness. Recently, it was proved by Bressan et al. [2]
that the Cauchy problem with general initial data 1o € H!(IR) has a unique conservative
solution, globally in time; using a direct approach based on characteristics for the unique-
ness of conservative solutions. Our goal is to compute such conservative solutions.

Simulating these peakon solutions numerically poses quite a challenge — especially
if one is interested in considering a peakon-antipeakon interaction (i.e., the interaction



