Commun. Comput. Phys. Vol. 20, No. 4, pp. 1106-1126
doi: 10.4208/ cicp.030316.310716sw October 2016

COMPUTATIONAL SOFTWARE

DASHMM: Dynamic Adaptive System for
Hierarchical Multipole Methods

J. DeBuhr!*, B. Zhangl, A. Tsueda?, V. Tilstra-Smith3 and T. 'S’cerling1

1 Center for Research in Extreme Scale Technologies, School of Informatics and
Computing, Indiana University, Bloomington, IN, 47404, USA.

2 College of Arts and Sciences, Loyola University Chicago, Chicago, IL, 60660, USA.
3 Department of Physics and Mathematics, Central College, Pella, IA, 50219, USA.

Received 3 March 2016; Accepted (in revised version) 31 July 2016

Abstract. We present DASHMM, a general library implementing multipole methods
(including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dy-
namic adaptive runtime techniques provided by the HPX-5 system to parallelize the
resulting multipole moment computation. The result is a library that is easy-to-use,
extensible, scalable, efficient, and portable. We present both the abstractions defined
by DASHMM as well as the specific features of HPX-5 that allow the library to execute
scalably and efficiently.

AMS subiject classifications: 15A06, 31C20, 68N19

Key words: Barnes-Hut method, fast multipole method, Laplace potential, ParalleX, runtime
software.

Program summary

Program title: DASHMM

Nature of problem: Evaluates the Laplace potentials at N target locations induced by M source
points.

Software license: BSD 3-Clause
CiCP scientific software URL: http://www.global-sci.com/code/dashmm-0.5.tar.gz
Distribution format: .gz

Programming language(s): C++

*Corresponding author. Email address: jdebuhr@indiana.edu (J. DeBuhr)

http:/ /www.global-sci.com/ 1106 (©2016 Global-Science Press



J. DeBuhr et al. / Commun. Comput. Phys., 20 (2016), pp. 1106-1126 1107

Computer platform: x86_64

Operating system: Linux

Compilers: GCC 4.8.4 or newer; icc (tested with 15.0.1)
RAM:

External routines/libraries: HPX-52.1.0 or later
Running time:

Restrictions: Currently only supports shared memory, but library will be extended to multiple
nodes

Supplementary material and references: https://wuw.crest.iu.edu/projects/dashmm/
http://hpx.crest.iu.edu/

Additional Comments:

1 Introduction

Multipole methods are a key computational kernel in a wide variety of scientific applica-
tions spanning multiple disciplines. However, these applications are emerging as scaling-
constrained when using conventional parallelization practices. Emerging, dynamic task
management execution models can go beyond conventional programming practices to
significantly improve both efficiency and scalability for algorithms exhibiting irregular
and time-varying executions. Multipole method calculations are an example of an irreg-
ular application that would benefit from the use of a dynamic adaptive runtime system
approach. In this paper, we present DASHMM, a library leveraging the power and ex-
pressibility of an experimental runtime system to improve the efficiency and scalability of
multipole method calculations, to solve ever more challenging end-user problem domain
applications.

The Barnes-Hut (BH) [5] method and the Fast Multipole Method (FMM) [11], both
exemplars of multipole methods, are used extensively in applications [7,10,19,23]. The
fundamental building blocks of these methods are quite similar, and so it is worth con-
structing a generalization of multipole methods that encompasses both BH and FMM.
In practice, many variations and improvements on the original forms of these methods
are used; a library that provides only a few rigidly defined methods would be of little
use. Instead, DASHMM outlines a set of abstractions that are general enough to allow
both BH and the FMM to be implemented as well as many variations on the theme of
multipole methods. With the abstractions defined, the task is to effectively parallelize the
resulting general multipole method.

Considerable prior effort has been exerted on multipole methods. The first paral-
lel FMM algorithm is introduced by Greengard and Gropp in its 2D uniform version
on shared memory architecture [9]. Zhao and Johnsson studied the parallelization of
3D uniform FMM on the connection machine [34]. The parallelization strategy follows



