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Abstract. Pressure-correction projection finite element methods (FEMs) are proposed
to solve nonstationary natural convection problems in this paper. The first-order and
second-order backward difference formulas are applied for time derivative, the sta-
bility analysis and error estimates of the semi-discrete schemes are presented using
energy method. Compared with characteristic variational multiscale FEM, pressure-
correction projection FEMs are more efficient and unconditionally energy stable. Am-
ple numerical results are presented to demonstrate the effectiveness of the pressure-
correction projection FEMs for solving these problems.
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1 Introduction

We consider in this paper numerical schemes for solving the time-dependent nonlinear
natural convection (NC) equations:
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ut−Pr ∆u+(u·∇)u+∇p=Pr RajT in Ω×(0,T1],

∇·u=0 in Ω×(0,T1],

Tt−κ∆T+(u·∇)T=γ in Ω×(0,T1],

u(x,0)=u0, T(x,0)=T0 in Ω×{0},

u=0, T=0 on ∂Ω×(0,T1],

(1.1)
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where x = (x1,x2), j = (0,1)T , Ω is an open bounded domain in R
2 with a sufficiently

smooth boundary ∂Ω, Pr,κ, Ra, T1 and γ represent the Prandtl number, the thermal con-
ductivity parameter, the Rayleigh number, the given final time and the forcing function,
respectively. The unknown functions are velocity vector u=(u1,u2), pressure p and tem-
perature T. Just as [10, 17] presented in Navier-Stokes equations, we consider a homoge-
neous Dirichlet boundary conditions in the above for simplicity and to fix the idea.

The NC equations constitute an important system of equations in atmospheric dy-
namics and dissipative nonlinear system of equations including continuity equation,
momentum equation and energy equation. Since the system of equations contains the
velocity field, the pressure as well as the temperature field, it is a challenge to construct
efficient and unconditionally energy stable schemes. While an enormous body of works
have been devoted to developing efficient schemes for the stationary or nonstationary
NC equations (cf. [1, 13, 18, 19, 23, 24] and the references therein), much less attention has
been paid to developing unconditionally energy stable schemes. Boland and Layton [1]
gave some numerical analysis and numerical results for the non-stationary natural con-
vection equations. Luo and his collaborators offered lowest order finite difference scheme
based on mixed finite element method (FEM) for non-stationary natural convection prob-
lem in [13]. In addition, Si and his collaborators [18] formulated the modified character-
istics Gauge-Uzawa FEM for time dependent conduction-convection problems. Wu et
al. [23] studied a characteristic variational multiscale (C-VMS) FEM for time-dependent
conduction-convection problem. The objective for this paper is to design efficient and
unconditionally energy stable numerical schemes for the coupled system.

For the above coupled nonlinear system, there are some numerical difficulties: (i)
the coupling of the velocity and pressure through the incompressibility constraint; (ii)
the presence of nonlinear terms; (iii) the coupling of flow field and temperature field.
However, the first is the main difficulty. To overcome this difficulty, a common strategy
to decouple the computation of the pressure from the velocity is to use a projection-type
scheme as in the case for Navier-Stokes equations (cf., [2, 7, 20]).

Projection methods can be viewed as fractional/splitting step methods, where the
convection-diffusion and the incompressibility are dealt with in two different sub-steps
(see [4, 5, 7–10, 14, 16]). For pressure-correction (PC) projection methods, the pressure is
made explicit in the first substep and is corrected in the second one by projecting the pro-
visional velocity onto the space of incompressible vector fields. The velocity obtained in
the convection-diffusion sub-step is projected in order to satisfy the weak incompressibil-
ity condition. As we know, standard pressure-correction (SPC) projection scheme which
may be first given by Goda [6] (also see [7, 16, 17]) suffers from the nonphysical pres-
sure boundary condition that induces a numerical boundary layer, which degrades the
accuracy of the pressure approximation. Timmermans et al. [21] proposed the rotational
pressure-correction (RPC) scheme (also see [7, 10, 17]) that leads to improved pressure
approximation. More importantly and appealing, using projection methods, one only
needs to solve a sequence of decoupled elliptic equations for the velocity and the pres-
sure at each time step, making it very efficient for large scale numerical simulations. As


