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Abstract. A second order Ghost Fluid method is proposed for the treatment of inter-
face problems of elliptic equations with discontinuous coefficients. By appropriate use
of auxiliary virtual points, physical jump conditions are enforced at the interface. The
signed distance function is used for the implicit description of irregular domain. With
the additional unknowns, high order approximation considering the discontinuity can
be built. To avoid the ill-conditioned matrix, the interpolation stencils are selected
adaptively to balance the accuracy and the numerical stability. Additional equations
containing the jump restrictions are assembled with the original discretized algebraic
equations to form a new sparse linear system. Several Krylov iterative solvers are
tested for the newly derived linear system. The results of a series of 1-D, 2-D tests
show that the proposed method possesses second order accuracy in L∞ norm. Besides,
the method can be extended to the 3-D problems straightforwardly. Numerical results
reveal the present method is highly efficient and robust in dealing with the interface
problems of elliptic equations.
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1 Introduction

The elliptic equation with a discontinuous physical field across the irregular interface ap-
pears in many applications such as diffusion phenomenon, heat transfer, crystal growth
and many others. For fluid dynamic problems, the method used for treating irregular
interface can be extended in solving the incompressible NavierStokes equations. For in-
stance, without adding source terms, the effects of surface tension can be considered in
the pressure Poisson equation straightforwardly.
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To solve an elliptic equation with irregular interfaces, a body-fitted grid can be ap-
plied [1]. Unfortunately, generating mesh that fits the boundaries of the computational
domain with complex internal geometries is time-consuming, often requiring manual in-
tervention to modify and cleaning-up the geometry. On the other hand, we can use the
finite element method [2] with more flexible unstructured mesh to model the complex
boundary. However, it may require a huge amount of time for the regeneration or defor-
mation of the computational grid when the corresponding interfaces are changing. The
Cartesian grid method can be generated automatically and efficient in handling the com-
plex geometries with simplified data structure and formulations. One difficulty in using
the Cartesian grid method exists in how to impose the jump conditions implicitly at the
grid points adjacent to the interface without losing accuracy.

The IB (immersed boundary) method is a type of Cartesian grid method first pro-
posed by Peskin [3] for the simulation of human heart. The direct forcing approach was
latter proposed by Mohd-Yusof [4]. However, high order immersed boundary methods
are restricted to certain type of boundary conditions. To ensure numerical stability, the
traditional IB method uses Heaviside function to smooth the jumps of the diffusive coef-
ficient which may bring out unexpected smearing around the interface. With the applica-
tion of generalized Taylor expansions, the original IIM (Immersed Interface Method) [5,6]
adaptively modifies the stencil to obtain the O(h) truncation error along the interface.
For smooth coefficients, this reduces to the standard 5-point finite difference stencil. IIM
is a second order numerical method to preserve the jump conditions at the interface.
Compared with the original second-order IIM [5], a newly developed IIM [7] achieves
arbitrarily high-order accuracy with a wider set of grid stencils. However, this algorithm
is fairly complex and result in a non-symmetric and not diagonally dominated system.

The Ghost Fluid Method (GFM) was proposed by R. Fedkiw et al. [8] to properly treat
the boundary conditions across the interface. The GFM creates an artificial fluid to im-
plicitly enforce proper conditions. Motivated by the original GFM, Liu et al. [9] introduce
fictitious points along coordinates to enforce the jump conditions properly. Although a
symmetric positive definite linear system is derived, the tangential flux [β∇u·τ] in deter-
mining the fictitious contribution is neglected, which results in only first order accuracy.
The MIB (Matched Interface and Boundary) method [10] was then proposed to account
for a non-zero [β∇u·τ] by differentiating the given jump conditions using one-sided in-
terpolations. This treatment widens the stencil in several directions that depend on the
local geometry, and results in a non-symmetric discretization. The MIB method was ex-
tended by Zhou et al. [11] to handle high curvature geometry, and by Yu et al. [12] to
provide a 3D version MIB method.

Some researchers use the fictitious points to enforce the Dirichlet or Neumann type
boundary conditions as well as the jump conditions for the immersed interface bound-
ary. The method presented by Johansen et al. [13] achieves second order accuracy and
preserves jumps at the interface. However, this method only handling the Dirichlet type
boundary conditions. In the method proposed by Cisternino et al. [14], additional un-
knowns are introduced to allow straightforward expression of the interface transmission


