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Abstract. Accurate simulations of high-speed rarefied flows present many physical
and computational challenges. Toward this end, the present work extends the Unified
Gas Kinetic Scheme (UGKS) to a wider range of Mach and Knudsen numbers by imple-
menting WENO (Weighted Essentially Non-Oscillatory) interpolation. Then the UGKS
is employed to simulate the canonical problem of lid-driven cavity flow at high speeds.
Direct Simulation Monte Carlo (DSMC) computations are also performed when appro-
priate for comparison. The effect of aspect ratio, Knudsen number and Mach number
on cavity flow physics is examined leading to important insight.
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1 Introduction

High-speed rarefied microcavity flows are of importance in the study of hypersonic flight
and atmospheric re-entry flows. Scratches, impact damage or manufacturing defects in
the thermal protection system of the flight vehicles can be conveniently modeled as mi-
crocavities. The presence of a microcavity on the thermal protection system surface may
potentially be hazardous. According to Bertin and Cummings [1], one of the main con-
tributing factors to the Columbia space shuttle accident was hot gas breaching through a
cavity in the thermal protection system of the vehicle during its re-entry, causing catas-
trophic damage. Many of these flows of interest exhibit a wide range a Knudsen numbers
within the flow domain of interest. For example, in high-altitude hypersonic and re-entry
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Figure 1: Knudsen number limits on the mathematical models.

flows, the freestream may be rarefied but the flow in the cavity could be close to contin-
uum due to the entrapment of many molecules. It is important to characterize mixing
and heat exchange efficiency of a cavity of given shape and size as functions of Reynolds,
Mach and Knudsen numbers. Therefore, it is critical that the simulation tool be capable
of capturing a range of Mach number and Knudsen number physics within a single flow
domain.

Different Knudsen number regimes and corresponding physical features and govern-
ing equations are shown in Fig. 1. Efforts have been made in literature to couple con-
tinuum and discrete solvers to derive a hybrid scheme or even to extend the Boltzmann
equation based solvers to continuum regime. However, the restrictions on time-step (of
the order of mean collision time) and grid size (of the order of mean-free path) cannot
be avoided because of the operator-splitting methods used for separating the collision
and transport phenomena. The UGKS of Xu [2], is potentially efficient in both rarefied
and continuum regimes due to the novel approach of coupling between particle trans-
port and collision. The finite-volume UGKS evaluates the flux across each numerical cell
according to the BGK-Shakhov [3, 4] model with a discretized velocity space [5]. The ad-
vantage of UGKS is due to the fact that the time-step and the cell size are restricted by the
Courant-Friedrichs-Lewy (CFL) condition rather than the corresponding mean collision
time or mean-free path.

The main objectives of the paper are to: (i) extend the applicability of UGKS by im-
plementing, testing and verifying a WENO (weighted essentially non-oscillatory) inter-
polation scheme; and (ii) examine the effect of Mach number, Knudsen number and as-
pect ratio on the flow characteristics in a lid-driven microcavity flow. In the first part,
various WENO [6, 7] variants are compared against the original Van Leer [8] scheme
to establish the applicability of the different interpolation schemes. Then the UGKS is
compared against the well-established DSMC solver OpenFOAM (dsmcFOAM) at high
Knudsen numbers. Once the verification is complete, the UGKS solver is used to investi-
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gate the flow features within a microcavity at different conditions. This work addresses
mostly two-dimensional flows for ease of numerical scheme development and verifica-
tion/validation. Clearly further three-dimensional studies are needed for compete inves-
tigation of flow physics.

In Section 2, the basic features of DSMC and UGKS are discussed. Then the imple-
mentation of WENO for performing the interpolation required in UGKS reconstruction
is presented. The cavity flow configuration and simulation parameters are described in
Section 3. The results are presented in Section 4. The first set of results pertains to assess-
ing the different WENO schemes and verification against DSMC. Then the flow physics
in the cavity is examined as a function of relevant parameters. The paper concludes in
Section 5 with a brief discussion.

2 DSMC and UGKS approaches

The physical underpinnings of DSMC and UGKS are briefly reviewed in this section. A
detailed algorithm can be found in [9] and [2] for DSMC and UGKS schemes respectively.
The implementation of WENO schemes into UGKS is discussed.

2.1 DSMC

The DSMC method represents real gas flow using a large number of simulated particles.
This method is one way to realize physical processes modeled by the Boltzmann equa-
tion. The DSMC method, similar to other Monte Carlo schemes, is a statistical approach
whose solutions are shown to converge towards the analytical solutions of Boltzmann
equation with sufficiently large number of samples. The number of simulated molecules
is much smaller than the number of real molecules present in the flow. Appropriate
choice of collision partners and effecting sufficient number of collisions during one time
step in a cell guarantees a reasonable facsimile of the real flow. The intermolecular col-
lisions are treated on a probabilistic rather than a deterministic basis and are subject to
the ‘molecular chaos’ ansatz. The essential DSMC approximation is the uncoupling, over
a small time interval or step, of molecular streaming and intermolecular collisions. The
position coordinates, velocity components and internal state of each molecule evolve in
time subject to representative collisions within the domain and due to boundary interac-
tions.

A typical DSMC implementation can be briefly described as follows. A physical flow
domain with appropriate boundaries is described. The computational domain is divided
into cells used for selecting collision partners and over which the particle properties are
averaged to obtain macroscopic properties. The physical domain is initialized by speci-
fying the number of simulated particles and assigning initial position and velocity values
according to an equilibrium probability density function calculated from the given flow
conditions. The simulation then proceeds, stepping through time as follows:
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1. The particles are advected according to the velocity and time step size.

2. Boundary conditions, such as collisions with walls, inflow and outflow, are applied.

3. Particle collisions (elastic and inelastic) are computed based on collision probabili-
ties and molecular models.

4. Macroscopic flow field variables are evaluated by averaging over the properties of
the individual particles.

This procedure implies certain assumptions and limitations. First, the time step must
be small enough relative to the mean collision time such that the particle movements
and the collision operations can be separated. This entails the time step to be approx-
imately one-third of the mean collision time. Second, the collision partners are chosen
among the particles in each cell. Consequently, each cell should be less than one mean-
free path in size. Collision partners can then be randomly chosen from the particles in
each cell while maintaining physical accuracy. Third, each cell should contain sufficient
particles such that the macroscopic averages are statistically meaningful. Generally 20 to
25 particles per cell are required. Further, when the mean flow speed is much lesser than
the corresponding molecular speed, the DSMC method is subject to significant statisti-
cal fluctuations. By its very nature, DSMC is well suited for high-speed rarefied flows.
However, those very features render DSMC computationally expensive for continuum,
near-continuum or low-speed flows. More details on DSMC can be found in [9].

2.2 UGKS

The Unified Gas Kinetic Scheme (UGKS) proposes an alternate approach to solving
the Boltzmann equation. The UGKS is based on GKM (Gas Kinetic Method) which
has been successfully used in the continuum regime [10–13]. UGKS is a finite volume
approach wherein the fluxes through the control surfaces are derived from the BGK-
Shakhov model [3, 4] with a discretized velocity space [5]. The BGK-Shakhov model
equation for one dimensional case (for simplicity) can be written as:

∂t f +u∂x f =
f+(0)− f

τ
, (2.1)

where f is the single particle velocity distribution function (vdf), u is the particle velocity,
τ is the mean collision time and f+(0) is the modified (due to Prandtl number fix [3])
equilibrium velocity distribution function (vdf). The modified equilibrium distribution
is expressed as:

f+(0)= f (0)
[

1+(1−Pr)c.q

(

c2

RT
−5

)

/(5pRT)

]

, (2.2)

where f (0) is the Maxwellian distribution, Pr is the Prandtl number, c is the random
(or thermal or peculiar) velocity, q is the heat flux, R is the gas constant and T is the
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temperature. The Maxwellian distribution for 1-D case is:

f (0)=ρ

(

λ

π

) K+1
2

e−λ((u−U)2−ζ2), (2.3)

where ρ is the density, λ=m/(2kBT), m is the molecular mass, kB is the Boltzmann con-
stant, U is the macroscopic velocity, K is the number of internal degrees of freedom and
ζ2 =∑

K
i=1ζ2

i is the energy associated with the internal degrees of freedom.
An integral solution of the BGK-Shakhov equation constructed via the method of

characteristics [14] is:

f (x,t,u,ζ)=
1

τ

∫ tn+1

tn
f (0)

(

x−u
(

t−t
′)

,t
′
,u,ζ

)

e
t
′ −t
τ dt

′
+e

tn−t
τ f n

0

(

x−u
(

t−tn
)

,tn,u,ζ
)

, (2.4)

where f n
0 is the initial distribution function at tn.

The implementation of the finite volume method starts with the discretization of the
physical, temporal and the particle velocity space which is collectively known as the
phase space.

1. The physical space is divided into uniform structured cells where the ith cell has
its center at xi and its left and right interfaces are denoted by xi−1/2 and xi+1/2

respectively. Hence the cell size ∆xi = xi+1/2−xi−1/2.

2. The discretized temporal space is represented by tn for the nth time-step.

3. The velocity space is divided into 2M+1 cells with the cell size ∆u. The center of
kth velocity interval is uk=k∆uk. Hence, the cell averaged particle velocity at the kth

cell

uk∈
[(

k− 1

2

)

∆uk,

(

k+
1

2

)

∆uk

]

; k∈Z [−M,M]. (2.5)

Using finite volume discretization in phase space and invoking the trapezoidal rule to
approximate the collision term, the BGK-Shakhov difference equation takes the form:

f n+1
i,k = f n

i,k+
1

∆x

∫ tn+1

tn

(

fi−1/2,kuk− fi+1/2,kuk

)

dt+
∆t

2





f
+(0)(n+1)
i,k − f n+1

i,k

τn+1
+

f
+(0)(n)
i,k − f n

i,k

τn



,

(2.6)
where f n

i,k and f n+1
i,k are the cell averaged distribution functions in the ith cell and kth dis-

crete particle velocity (uk), at tn and tn+1 respectively. Here, ∆x is the cell size and ∆t is the
time-step determined by CFL condition; fi−1/2,k and fi+1/2,k are the distribution functions
across the cell interface which are computed using the integral solution of BGK-Shakhov
equation (2.4). In the original UGKS, Van-Leer interpolation is used to determine the dis-
tribution ( f n

0 in Eq. (2.4)) at a particular cell interface. The Maxwellian distribution ( f (0)

in Eq. (2.4)) across the cell interface is approximated by Taylor’s expansion in space and
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time. First order expansion of an equilibrium state is necessary to ensure the validity of

UGKS over the entire Knudsen number regime. f
+(0)
i,k and τ are modified equilibrium

distributions and particle collision time respectively. Both quantities have a one-to-one
correspondence with the instantaneous macroscopic properties. An evolution equation
for the macroscopic properties can be obtained by taking the moments of the above BGK-
Shakhov difference equation about the collision invariants (ψ):

ψ=
(

1,u,0.5
(

u2+ζ2
))T

. (2.7)

Note that the moments of collision terms about the collision invariants must vanish in
order to satisfy conservation laws.

Qn+1
i =Qn

i +
1

∆x
(Fi−1/2−Fi+1/2), (2.8)

where

F=
∫ tn+1

tn

∫

ψ f udΞdt, Q=





ρ
ρU
ρE



, dΞ=dudζ1dζ2 ···dζk. (2.9)

WENO Implementation

One of the crucial operations in the UGKS is the interpolation of the distribution function
to the cell interface. In high Mach number flows, interpolation can be challenging due to
the presence of steep shocks. It is shown that Van-Leer interpolation produces spurious
oscillations in the computed results at high Knudsen number as well. In this work, we
present the implementation of 5th order WENO (Weighted Essentially Non-Oscillatory)
schemes for interpolation [6, 7]. WENO uses a convex combination of all the candidate
stencils neighbouring a cell, each being assigned a non-linear weight which depends on
the local smoothness of the numerical solution based on the corresponding stencil. This
ensures non-oscillatory behaviour near discontinuities without compromising the higher
accuracy.

Fig. 2 shows a typical computational stencil used for each reconstruction scheme. A
second order Van-Leer limiter uses the values stored at the immediate nodes neighbour-
ing a cell interface to construct the value at the cell interface. For instance, the flux of the
initial distribution function at kth velocity space at the right interface of ith cell is given by

qi+1/2,k =qi,k+(xi+1/2−xi)si,k, (2.10)

where the slope si,k is calculated from the Van-Leer scheme

si,k =(sign(s1)+sign(s2))
|s1||s2|
|s1|+|s2|

, (2.11)

where

s1=
qi,k−qi−1,k

xi−xi−1
and s2=

qi+1,k−qi,k

xi+1−xi
. (2.12)



V. Venugopal and S. S. Girimaji / Commun. Comput. Phys., 17 (2015), pp. 1127-1150 1133

Table 1: Variants of UGKS code.

Name Reconstruction scheme

Van-Leer 2nd order Van Leer limiter

WENO-S 5th order WENO scheme of Shu [6]

WENO-C 5th order WENO scheme of Carpenter [7]

(a) Van-Leer (b) WENO-S (c) WENO-C

Figure 2: Computational stencils for different reconstruction schemes.

WENO-S scheme initially reconstructs the three values at the cell interface using the illus-
trated stencils S1, S2 and S3. The final value at interface is then a convex combination of
these values which are computed using weights that are specific for the scheme. WENO-
C scheme is similar to WENO-S but avoids the bias of choosing three cells to the left of
the interface and two from the right. Reconstruction based on this scheme can be compu-
tationally expensive as it involves calculations based on four stencils compared to that of
WENO-S which uses only three stencils. However, WENO-C is known to lead to faster
convergence [7].

WENO-S and WENO-C

The WENO-C scheme is presented first and WENO-S can be derived from WENO-C
with minor simplifications. WENO-C calculates the numerical flux (flux of initial dis-
tribution function in our case) at the interface (xi+ 1

2
) as a convex combination of four

third order fluxes that are calculated based on the following three point stencils: S(1)=
{xi−2,xi−1,xi}, S(2)={xi−1,xi,xi+1}, S(3)={xi,xi+1,xi+2} and S(4)={xi+1,xi+2,xi+3}. Note
that the collection of all four stencils is symmetric with respect to xi+ 1

2
. The WENO-C

flux of any quantity q is then given by

qi+ 1
2
=w(1)q

(1)

i+ 1
2

+w(2)q
(2)

i+ 1
2

+w(3)q
(3)

i+ 1
2

+w(4)q
(4)

i+ 1
2

, (2.13)
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where q
(r)

i+ 1
2

is the 3rd order flux defined by the stencil S(r) (r=1,2,3,4)

















q
(1)

i+ 1
2

q
(2)

i+ 1
2

q
(3)

i+ 1
2

q
(4)

i+ 1
2

















=
1

6









2 −7 11 0 0 0
0 −1 5 2 0 0
0 0 2 5 −1 0
0 0 0 11 −7 2

























qi−2

qi−1

qi

qi+1

qi+2

qi+3

















(2.14)

and the weight function is given by

w(r)=
b(r)

∑
4
m=1b(r)

, (2.15)

b(r)=d(r)
(

1+
p

ǫ+β(r)

)

, ǫ=10−6, (2.16)

d(1)=
1

10
−∆, d(2)=

6

10
−3∆, d(3)=

3

10
+3∆, d(4)=∆. (2.17)

The functions β(r) are the smoothness indicators and are given by

β(1)=
13

12
(qi−2−2qi−1+qi)

2 +
1

4
(qi−2−4qi−1+3qi)

2 , (2.18a)

β(2)=
13

12
(qi−1−2qi+qi+1)

2 +
1

4
(qi−1−qi+1)

2 , (2.18b)

β(3)=
13

12
(qi−2qi+1+qi+2)

2 +
1

4
(3qi−4qi+1+3qi+2)

2 , (2.18c)

β(4)=
13

12
(qi+1−2qi+2+qi+3)

2+
1

4
(−5qi+1+8qi+2−3qi+3)

2 . (2.18d)

Simulations in 2-D physical space must be performed carefully. Apart from grid sensi-
tivity studies, it is equally important to confirm that one is not missing to capture any
three dimensional flow features. Possibility of 3-D effects are high in our case since we
deal with highly non-equilibrium flows with multiple vortex structures. However, in the
following part, it is seen that our flow structures are free from any 3-D effects ensuring
accurate results with corresponding 2-D simulations. The expression for p is given by

p=

{

(−qi−2+5qi−1−10qi+10qi+1−5qi+2+qi+3)
2 , for ∆ 6=0,

(qi−2−4qi−1+6qi−4qi+1+qi+2)
2 , for ∆=0.

(2.19)

The value of ∆ affects the convergence rate and for the specific value of ∆c =
1
20 , the

convergence rate is 6 [7]. All our WENO-C simulations are with ∆= 1
20 . It can be proved

that the classical fifth-order upwind-biased WENO-S scheme of Shu [6] is obtained by
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setting ∆ = 0. It should be noted that the WENO reconstruction to the left interface to
obtain qi− 1

2
is mirror symmetric with respect to xi of the above procedure [6].

The flux of the initial distribution function at the cell interface at xi+1/2 is selected
based on the direction of the mean particle velocity in the corresponding velocity space
uk:

qi+1/2,k =







q
(le f t)
i+1/2,k, if uk≥0,

q
(right)
i+1/2,k, if uk<0.

(2.20)

3 Cavity flow simulation

We simulate the flow of Argon gas within a cavity driven by a lid moving at a constant
velocity of Ulid. The degree of rarefaction is set using the global (freestream) Knudsen
number, which is the ratio between the mean-free path of the molecules in the freestream
(λ∞) to the global length scale (L).

Knglobal =
λ∞

L
. (3.1)

Global length scale for this problem is defined as the characteristic width of the cavity,
which is of the order of one micron. Hence, a 2D square cavity, would have the dimen-
sions of 10−6m×10−6m (Fig. 3). All cavity walls including the lid are set to be isothermal
maintaining a temperature of Twall . The dimensions of cavities with various aspect ratios
(AR, defined as the ratio of height to width of the cavity) simulated in the present study
are given in Table 2. The list of various simulation conditions is given in Tables 3 and 4.

Figure 3: Cavity geometry.
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Table 2: Dimensions in microns for wide and narrow cavities.

AR Height Width

1.0 1.0 1.0

0.4 1.0 2.5

2.5 2.5 1.0

Table 3: Simulation parameters for validation cases.

AR Knglobal Machlid Twall (K)

1.0 0.05 0.3 300

1.0 0.5 0.3 300

1.0 1.0 0.3 300

1.0 10.0 0.3 300

Table 4: Simulation parameters for studies on cavity flow physics.

AR Knglobal Machlid Twall (K)

0.4 0.005 0.3 273

0.4 0.05 0.3 273

0.4 1.0 0.3 273

0.4 10.0 0.3 273

0.4 0.005 3.0 273

0.4 0.05 3.0 273

0.4 1.0 3.0 273

0.4 10.0 3.0 273

2.5 0.005 0.3 273

2.5 0.05 0.3 273

2.5 1.0 0.3 273

2.5 10.0 0.3 273

2.5 0.005 3.0 273

2.5 0.05 3.0 273

2.5 1.0 3.0 273

2.5 10.0 3.0 273

DSMC Implementation

The grid spacing in any direction is one hundredth of a micron for DSMC simulations
so that the cell size in never more than the freestream mean-free path (λ∞).The time step
for DSMC calculations is on the order of mean collision time of the freestream molecules,
τ∞ and intrinsic gas properties such as freestream number density (n∞), λ∞ and mean
collision time (τ∞) are calculated assuming a Variable Hard Sphere (VHS) binary collision
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Table 5: Molecular properties for Argon gas.

Molecular mass, m 66.3×10−27kg

Reference diameter, dre f 4.17×10−10m

Reference temperature, Tre f 273K

Viscosity index, ωVHS 0.81

Diffusion index, αVHS 1.0

model (Table 5, Eq. (3.2), Eq. (3.3))

λ∞=
1√

2πd2
re f n∞

, (3.2)

τ∞=
1

πd2
re f n∞c̄r∞

, (3.3)

where c̄r∞=
( 16kTre f

πm

)1/2
is the mean magnitude of the relative velocity of colliding molecules

in freestream condition [9]. DSMC models the gas-boundary interaction using diffuse re-
flection model with complete thermal accommodation. The fraction determining number
of real molecules represented by a simulated molecule is defined such that the average
number of simulated molecules per cell is 25. Simulations in 2-D physical space must
be performed carefully. Apart from grid sensitivity studies, it is equally important to
confirm that one is not missing to capture any three dimensional flow features. Possibil-
ity of 3-D effects are high in our case since we deal with highly non-equilibrium flows
with multiple vortex structures. However, in the following part, it is seen that our flow
structures are free from any 3-D effects ensuring accurate results with corresponding 2-D
simulations. in order to maintain a good acceptance rate of the collision partners being
selected from a particular cell, and also to make a meaningful statistical averaging among
the molecules in a cell. Collisions are calculated based on Variable Hard Sphere (VHS)
binary collision model.

UGKS implementation

Based on grid sensitivity studies, the grid size for the UGKS computations was chosen to
be 0.09 microns. The time-step is calculated from the CFL condition with a CFL number
of 0.9. The Prandtl number is set to 2/3. A set of 28 weights based on Gauss-Hermite
quadrature is used for numerical integration over the discrete velocity space in each di-
rection [15]. The mean collision time (τ) for each cell is defined as the ratio its correspond-
ing dynamic viscosity based on a VHS binary collision model (µVHS) to the macroscopic
pressure (p)

τ=
µVHS

p
, (3.4)

p=
1

3

∫

(

(u−U)2+ζ2
)

f dΞ, (3.5)
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and µVHS is given by Sutherland’s law

µVHS =µre f

(

T

Tre f

)ωVHS

, (3.6)

where µre f for VHS collision model is given by [9]

µre f =
5(αVHS+1)(αVHS+2)

√
π

4αVHS(5−2ωVHS)(7−2ωVHS)
Knglobal. (3.7)

The diffuse-wall boundary condition in UGKS is realised from the logic of impermeabil-
ity condition. A particular computational cell attached to the left wall is considered for
illustration purpose. The no-penetration condition then demands that

∑
k: uk>0

uk f
(0)
w,k + ∑

k: uk<0

uk f in
w,k=0, (3.8)

f
(0)
w,k is the Maxwellian-type distribution function at the wall in the kth velocity space

f (0)w,k =ρw

(

λw

π

)( K+1
2 )

e−λw((uk−Uw)
2+ζ2), (3.9)

where the subscript w denotes that the properties are at the wall. f in
w,k is the incoming

distribution function from the right side of the wall-interface which is obtained based on a
one-sided interpolation from the interior region. Density at the wall ρw is then computed
from Eq. (3.8) to satisfy the impermeability condition. The corresponding Maxwellian
distribution at the wall can then be calculated from Eq. (3.9). The distribution function at
this boundary is then expressed as

fw,k=

{

f (0)w,k , if uk≥0,

f in
w,k, if uk<0.

(3.10)

Finally, the fluxes Fw across the walls can be obtained from usual procedure

Fw=
∫ tn+1

tn

∫

ψ f udΞdt. (3.11)

4 Results and discussion

The main objective of this study is to provide numerical verification of the UGKS-WENO
implementation. Such verification can be most conveniently established in 2-D simu-
lations.Due to relatively low computational burden, wide range of verifications can be
performed with 2-D simulations. As a first step, we compare 2D simulations with 3-D



V. Venugopal and S. S. Girimaji / Commun. Comput. Phys., 17 (2015), pp. 1127-1150 1139

computations to establish that the former can capture important aspect of flow physics
seen in the latter. Thus, we perform a comparison between 2-D and 3-D simulation results
before proceeding to a more exhaustive verification/validation study with only 2-D sim-
ulations. Finally, we present on set of results for 100x100 discrete velocity Newton-Cotes
quadrature scheme.

4.1 Comparison between 2-D and 3-D simulations

A microcavity simulation of the case with lid velocity of Mach= 0.3 and Kn= 10 is per-
formed in 3-D domain with periodic boundary conditions in the spanwise dimension (Z).
The simulation is performed using OpenFOAM. The domain is divided into 100x100x100
sampling cells. Fig. 4(a) shows the mean-velocity profiles along mid-horizontal and mid-
vertical lines at different Z-planes. These profiles are also compared with corresponding
2-D DSMC and 2-D UGKS simulations in Fig. 4(a). Absence of any 3D effects is clearly
seen since the mean-profiles are the same with each and every case. Figs. 4(b), 4(c) and

(a) Mean-velocity profiles (b) X-Vorticity field

(c) Y-Vorticity field (d) Z-Vorticity field

Figure 4: 3-D Effects.
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4(d) show the x, y and z vorticity contours respectively. Note that the x and y vorticity
fields are purely random and distributed symmetrically over the entire domain. Also,
their average magnitude is very small compared to z-vorticity field. This clearly indi-
cates that 2-D simulations can indeed capture aspects of 3-D flow physics. Through the
remainder of this section, we will restrict ourselves to 2-D simulations for the verification
and flow physics studies.

4.2 Verification results

Basic verifications of UGKS has been performed in [2]. It is shown that the scheme per-
forms well in continuum and rarefied regimes. Here, we extend the validation to a larger
range of Knudsen numbers. To enable this wider range, different WENO interpolation
schemes are investigated.

The results from Van-Leer and WENO computations are compared against those from
DSMC computations of (a) OpenFOAM (dsmcFOAM) and (b) the results of Moham-
madzadeh et al. [16].

Figs. 5, 6, 7 and 8 show that the velocity and temperature profiles (along the mid-
vertical line, mid-horizontal line and lid surface) generated by UGKS agrees well with
those of corresponding DSMC simulations. Slight deviations in temperature profiles of
DSMC from that of UGKS at low global Knudsen numbers (Figs. 7 and 8) can be at-
tributed to the inadequacies (of cell-size, time-step and the number of particles per cell)
of DSMC at near continuum regime. Such slight deviations (owing to the large cell size)
have also been reported in DSMC simulations were carried out in continuum regime to
obtain flow fields in an expanding jet [17]. The main advantage of UGKS over DSMC
at low Knudsen numbers is also evident from the computational time required for the
simulations. For low global Kn numbers, DSMC simulations with openFOAM were at
least ten times computationally more expensive than a corresponding UGKS based sim-
ulation.

As can be seen from Figs. 5, 6 and 7, UGKS with Van-Leer scheme shows undesir-
able oscillations, that become prominent at high Knudsen numbers. These spurious os-
cillations are eliminated when higher order WENO reconstruction scheme is employed.
Moreover, at higher Knudsen numbers, UGKS with Van-Leer scheme has a much slower
rate of convergence compared to WENO-S or WENO-C schemes. A better illustration
of the smoothing effect of WENO schemes can be seen by comparing Fig. 9 and Fig. 10,
which show the temperature contours overlaid with the heat-flux lines (coloured with
heat-flux magnitude). Detailed discussion on the origination and possible means of re-
moval of these non-physical oscillations are included in Section ??. The inference is that
UGKS with a WENO-based reconstruction scheme is necessary at high Knudsen number
regimes. WENO-S and WENO-C produce nearly identical profiles for velocity and tem-
perature. Also, it is noted that these two schemes give similar steady-state values for all
macroscopic properties throughout the domain. The main distinction between the two
WENO methods is in the rate of convergence. WENO-C leads to a more rapid conver-
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(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 5: V-velocity profile al4ong mid-horizontal line.

(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 6: U-velocity profile along mid-vertical line.
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(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 7: Temperature profile along mid-horizontal line.

(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 8: Temperature profile along the lid.



V. Venugopal and S. S. Girimaji / Commun. Comput. Phys., 17 (2015), pp. 1127-1150 1143

(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 9: Temperature contours overlaid with heat-flux lines (Van-Leer).

(a) Kn=0.05 (b) Kn=0.5

(c) Kn=1.0 (d) Kn=10.0

Figure 10: Temperature contours overlaid with heat-flux lines (WENO-S).
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gence. However, WENO-C is computationally expensive since it uses an extra stencil to
interpolate the flux data to the cell interface. Throughout the reminder of this article, we
present results from WENO-S which was found to be adequate for current simulations.

4.3 Micro-cavity flow physics

Micro-cavities of practical interest come in many shapes and sizes. The nature of flow
inside these cavities depend critically on the shape. To understand the influence of shape,
we simplify the cavity geometry to rectangles of different aspect ratios shown in Table 2.
Flows within these cavities are simulated at different Mach and Knudsen numbers, and
the results are examined.

Figs. 11, 12, 13 and 14 show the streamlines coloured with the normalized velocity
magnitude for wide and deep cavities at different Knudsen and Mach numbers. The
background contour illustrates the varying strength of z-vorticity normalized by Ulid/L.

Note that the contour levels for z-vorticity are set in logarithmic scale indicating a
large range of z-vorticity strength (of about 10 orders of magnitude) within the cavity.
Comparison between these sets of figures reveal important Mach and Knudsen number
effects.

It can be clearly seen that a wide cavity, on an average, has a higher stream-wise ve-
locity as well as z-vortex strength when compared to a similar case (of same Knudsen and
Mach numbers) with a deep cavity. However, this behaviour is expected since the rate
at which momentum gets transferred from the moving lid to molecules within the cavity
is high for wide cavities owing to its large lid stroke for given area. Thus, the lid trans-
fers more momentum to the cavity fluid. The flow in wide cavities approach steady state
more readily and exhibit a stable configuration involving a single large primary vortex.
This was not the case with deep cavities where in most of the simulations triggered the
formation of a second vortex.

At a constant lid velocity, the number of active vortices decrease with an increase
of global Knudsen number. The mechanism that creates additional vortices for flows
near continuum regimes is clearly demonstrated in Figs. 12(b) and 14(b). It is seen that
for AR= 0.4 (Fig. 12(b)), secondary eddies have been created at the two bottom corners
under the main vortex. As the aspect ratio is increased to 2.5, these secondary eddies
grow and merge into a second vortex under the main one.

When the Knudsen number is maintained constant, the number of vortices increase
with an increase in the lid velocity. This is more prominent with flows in near-continuum
regime and with a high cavity aspect ratio. An interesting observation is that of the large
difference in vortex strengths between the vortices which appeared in a particular flow.
It is noted that the multi-vortex configuration is stable when secondary or higher level
vortices progressively showed a large relative difference in their vortex strengths. How-
ever, at high lid velocities, higher order vortices with vortex strengths comparable to the
primary vortex start appearing with an increase in the degree rarefaction (Fig. 14). This
phenomena triggers numerical instability (see Section ??) with non-physical oscillations
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(a) Kn=0.005 (b) Kn=0.05

(c) Kn=1 (d) Kn=10

Figure 11: Vortex structures for AR=0.4, Machlid =0.3.

(a) Kn=0.005 (b) Kn=0.05

(c) Kn=1 (d) Kn=10

Figure 12: Vortex structures for AR=0.4, Machlid =3.0.
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(a) Kn=0.005 (b) Kn=0.05

(c) Kn=1 (d) Kn=10

Figure 13: Vortex structures for AR=2.5, Machlid =0.3.

in the flow affecting the rate of convergence. For example, a snapshot of the highly non-
equilibrium case can be seen in Fig. 14(d). However, when the aspect ratio is reduced
for the same case (Fig. 12(d)), the geometry combined with the high degree of rarefaction
disallows the formation of any secondary eddies henceforth causing the flow to be steady
and stable with a single vortex configuration.

Another important factor to be noted from Fig. 10 is that the temperature peaks on the
upper right corner of the cavity, which increases with an increase in the degree of rarefac-
tion. This phenomena can be attributed to the relatively lesser number of inter-molecular
collisions (which allows for an exchange in energy transfer to neighbouring molecules)
than the number of molecular-surface interactions that occur in a rarefied cavity flow.
Further, the direction of heat flux disobeys Fourier’s law particularly with an increase in
the degree or rarefaction. Wang et al. [18] has derived an empirical model for non-Fourier
heat transfer by examining DSMC data of rarefied hypersonic flows. However, a univer-
sal model is yet to be formulated. A detailed study with an extended set of simulations
is currently under progress.



V. Venugopal and S. S. Girimaji / Commun. Comput. Phys., 17 (2015), pp. 1127-1150 1147

(a) Kn=0.005 (b) Kn=0.05

(c) Kn=1 (d) Kn=10

Figure 14: Vortex structures for AR=2.5, Machlid =3.0.

4.4 Simulations with Newton-Cotes quadrature

Due to the discretization in the velocity space, UGKS suffers from boundary induced dis-
continuities at high Knudsen numbers. A typical feature of the cavity flow is that the
distribution function can become highly irregular from discontinuities induced around
its corners. Significant oscillations are induced by the top two corners of the cavity due
to the strong discontinuities in the velocity between stationary and moving walls. The
discontinuities from the boundaries propagate inside the computational domain and pro-
duce non-physical oscillatory behaviour in the macroscopic quantities. The issue is pop-
ularly known as ‘ray effects’ in the transport theory community and appears in neutron
transport and radiative transfer [19]. Methodologies have been proposed and success-
fully implemented to eliminate this problem for low-speed rarefied flows [20, 21]. The
’ray effects’, in general, can be partially eliminated by increasing the number of dis-
crete velocities. With such an approach, the amplitude of these oscillations decreases
but their frequency increases. Further, the Gauss-Hermite type distribution points are
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(a) Van-Leer with 100×100 velocity points (b) WENO-S with 100×100 velocity points

(c) Van-Leer with 100×100 velocity points (d) DSMC

Figure 15: Vortex structures for AR=2.5, Machlid =3.0, Kn=10.

widely spaced in the velocity space. The weights of extreme velocities can be rather
small, minimizing their contribution in the process of numerical integration. So, the use
of Newton-Cotes quadrature is more promising in rarefied supersonic flows which are in
high non-equilibrium state [22].

In this final study, simulations are performed with an increased number of discrete
velocity points. Simulations are performed with a 100×100 Newton-Cotes quadrature for
the highly non-equilibrium case of deep cavity with a lid velocity of Mach 3 and Kn 10.
UGKS simulations with both Van-Leer and WENO-S interpolations are performed and
are compared with a corresponding DSMC simulation. Fig. 15 shows the vortex struc-
tures generated by these computations. Simulation with WENO-S converge much faster
than a corresponding Van-Leer case. Figs. 15(a), (b) and (d) shows the converged steady
solutions. Figs. 15(b) and 15(b) are converged solutions to the same convergence criteria,
but the latter took almost double the number of iterations more to reach a steady-state
solution (Fig. 15(a)). The DSMC solution (Fig. 15(d)) is oscillation-free and is believed to
be the most accurate in this rarefied supersonic regime. It can be seen that both Figs. 15(a)
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and 15(b) yield similar vortex structures to those by DSMC. However, the non-physical
oscillations in streamlines as well as the vorticity contours (Figs. 14(d) and 15(a)) are
smoothed out by the WENO-S based UGKS simulation (Fig. 15(b)).

5 Concluding remarks

The results from UGKS codes are validated against corresponding DSMC solutions for
a wide range of Knudsen numbers spanning from near-continuum/slip regime to rar-
efied regime. Use of WENO schemes for initial reconstruction of the distribution fluxes
gave oscillation free solutions with higher spacial accuracy as well as faster convergence
compared to Van-Leer limiting scheme at high Knudsen numbers.

Further simulations with varying aspect-ratio reveals that the formation of secondary
vortices depend on the degree of rarefaction as well as the lid velocity. It is observed that
multi-vortex configurations are favourable in high aspect ratio cavities. As the degree
of rarefaction is increased, secondary vortices tend to disappear. At the same time, the
number of active vortices increase with an increase in the lid velocity. However, with
higher lid velocities at highly rarefied regimes, non-physical oscillations appear in the
flow domain. Newton-Cotes quadrature with 100 velocity points in each direction along
with a 5th WENO scheme for flux interpolation is then necessary to obtain a physically
meaningful steady-state with UGKS. Full 3-D simulations are needed to further confirm
the physical features presented here.
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