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Abstract. Amid the recent interest in the role of membrane viscosity in the deforma-
tion of a fluid-filled capsule, we consider the role of various capsule properties (shear
elasticity, membrane bending stiffness and viscosity) in determining the response and
recovery times of a spherical capsule in shear flow. These times are determined by
fitting exponential functions to results for the Taylor deformation parameter Dxy. We
focus on the relationship between the membrane and fluid viscosity ratios, as sug-
gested by Diaz et al [8], and whether adjustments to the fluid viscosity ratio may be
used to approximate the effects of membrane viscosity. Based on its ability to repro-
duce response and recovery times, our results suggest that such an approach holds
promise.
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1 Intro

Diaz and coworkers [9] considered the response and recovery of an elastic capsule in
elongational flow. Finding that the capsule’s response and recovery times could be de-
termined by an exponential fitting, they investigated the role of parameters such as the
fluid viscosity ratio and the capillary number. The response and recovery times of the
capsule are important to understanding how a capsule will react in more complicated,
time-dependent flows, as arise in medical and industrial applications [10]. Diaz et al [8]
extended their consideration to a viscoelastic capsule in elongational flow and compared
the respective impacts of different fluid and membrane viscosity ratios.

However, many of the attractive aspects of elongational flow, such as simpler com-
putation due to axisymmetry, may also potentially restrict the applicability of its results.
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For instance, fluid and membrane viscosity ratios do not affect steady-state shape of the
capsule in elongational flow, and the capsule’s membrane does not exhibit any tank-
treading [2]. In contrast, the deformation of a capsule in shear flow has dynamical and
angular aspects which do not occur in elongational flow. The steady-state shape of a
capsule in shear flow depends on a range of parameters - capillary number, bending
stiffness, membrane and fluid viscosity ratios – as do the capsule’s angle of inclination
and tank-treading frequency.

Nonetheless, Diaz et al [9] applied their exponential-fitting methodology to the re-
sults of Ramanujan and Pozrikidis [23] for the deformation of a spherical capsule in shear
flow. They found instructive parallels between their results, including a near constant
ratio between response times in elongational and shear flows, for capsules with equal
steady-state deformation, as measured by the Taylor deformation parameter. This strik-
ing comparison, however, is limited because Ramanujan and Pozrikidis did not model
the membrane viscosity, and neither study incorporated bending stiffness. We aim to
consider this analogy in a more complete setting, with viscoelastic capsules that may
resist bending and have a non-unity fluid viscosity ratio.

We consider the deformation response of a spherical capsule in shear flow, along with
its shape recovery after the shear flow is abruptly stopped. Our methodology uses a
finite element structural method and treats the fluid with a lattice Boltzmann method,
coupling the structure and fluid with the immersed boundary method. The structural
model considers the capsule’s elasticity, membrane viscosity, and bending stiffness, while
the fluid model permits different fluid viscosities inside and outside of the capsule. We
quantify the shape change of the capsule using the Taylor deformation parameter and fit
an exponential curve to this parameter to determine the response and recovery times.

2 Algorithms

2.1 Fluid

The incompressible Navier-Stokes equations are solved using a lattice Boltzmann method
(LBM). Derived from the Boltzmann equation of statistical mechanics, the lattice Boltz-
mann method considers the fluid to be sets of particles that move between lattice nodes
in discrete timesteps with discrete velocities. Despite its statistical origins, the lattice
Boltzmann method is deterministic, using the averaged behaviour of particles.

The expression fi(xj,tn) represents the distribution of particles at xj with velocity ci at
time tn. The discrete velocities c are from the D3Q19 lattice model and we set h=dx=dt.
Using a multiple relaxation time (MRT) approximation of the collision integral, we have
the lattice Boltzmann equation

f(xj+cdt,tn+dt)−f(xj,tn)=−M−1S
[

m(xj,tn)−m(eq)(xj,tn)
]

(2.1)

in which we denote the probability distribution functions by f, their velocity moments
by m, and their equilibrium moments by m(eq) [6, 7, 13].


