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Abstract. A new solver is developed to numerically simulate the melting phase change
with natural convection. This solver was implemented on a single Nvidia GPU based
on the CUDA technology in order to simulate the melting phase change in a 2D rectan-
gular enclosure. The Rayleigh number is of the order of magnitude of 108 and Prandlt
is 50. The hybrid thermal lattice Boltzmann method (HTLBM) is employed to simu-
late the natural convection in the liquid phase, and the enthalpy formulation is used
to simulate the phase change aspect. The model is validated by experimental data and
published analytic results. The simulation results manifest a strong convection in the
melted phase and a different flow pattern from the reference results with low Rayleigh
number. In addition, the computational performance is estimated for single precision
arithmetic, and this solver yields 703.31MLUPS and 61.89GB/s device to device data
throughput on a Nvidia Tesla C2050 GPU.

PACS: 44.35.+c
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1 Introduction

Heat storage technologies now are widely used as an effective means to manage the en-
ergy availability and decrease the temperature fluctuations in various practical applica-
tions, such as in the electronics industry [1], the automotive industry [2, 3] and building
design [4, 5]. Compared to the sensible heat storage [6], the latent heat storage has a sig-
nificant advantage as it uses less storage volume to achieve a specified amount of heat
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load. Furthermore, in general, latent heat storage process is a constant temperature pro-
cess.

One of the most important physical phenomenon of latent heat storage is the solid-
liquid phase change, which is also a very critical process for many other applications
such as in the metal casting industry. To better understand solid-liquid phase change,
we need to know the temperature distribution in both solid and liquid phases, the flow
characteristics in liquid phase, the heat transfer characteristics and the transient inter-
face location. However, the solid-liquid phase change phenomenon is a complex process
which couples the natural convection in the liquid phase, the shifting of the solid-liquid
boundary and a heat transfer process. Due to these reasons, the solid-liquid phase change
is a strong non-linear process, difficult to analyse except for simple and ideal test cases.

The traditional way to simulate numerically the solid-liquid phase change by solv-
ing the Navier-Stokes equations is an effective method [8, 9]. The key aspect being the
switching of the advection term on and off during the phase change. In addition, the
dynamic position of the solid-liquid interface must be computed at each time step and
the corresponding boundary conditions for the LBM must be chosen accordingly.

In the past two decades the lattice Boltzmann method (LBM) matured as a promising
approach for CFD due to its intrinsic parallelism and good numerical stability along with
favourable numerical dissipation properties [24, 25]. All of those advantages make LBM
a promising complementary approach to the direct solution of the Navier-Stokes (NS)
equations [26]. In relatively recent studies, some researchers have begun to choose LBM
to simulate phase change [10–14].

In order to make the most of the inherent parallelism of LBM, numerous efforts have
been devoted to harness the calculation power of graphic processing units (GPU) [15–18].
A GPU is characterised by its highly parallel, manycore structure, which is especially
suited for data intensive calculations. Because more transistors are used to perform data
operations, a GPU performs considerably more float-point operations per time unit and
has a large memory bandwidth than a CPU counterpart [29]. Since GPUs were initially
used to render graphics, using them for a general purpose calculation remains complex
and prevents an easy implementation.

In this study, an approach is presented to numerically simulate the melting process in
combination with natural convection. We developed a highly efficient solver, running on
a graphic processing unit, for the liquid-solid melting phase change. The hybrid thermal
lattice Boltzmann method is employed to simulate the natural convection in the liquid
phase. For phase change, the enthalpy formulation is used. Because the total latent
heat of each grid node is a function of temperature and can embody the status of the
material, it is used as the key parameter to locate the interface. The simulation program
is optimized for parallel computing. Besides, experiments are also carried out, in order
to validate the present numerical simulation.
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2 Numerical modelling

2.1 Definition of the problem

Phase change materials (PCMs) are used to store or release energy. This process is related
to the melting/solidification. In this study, n-octadecane is chosen as PCM of interest; its
thermophysical properties used for simulation are presented in Table 1. One important
property of the n-octadecane is its high Prandtl number. A rectangular container whose
dimensions are 30mm(L)×172mm(H)×172mm(D) filled with n-octadecane — with a
height of 152mm — is heated up from the two vertical sides, the other sides are supposed
adiabatic (Fig. 1 and Fig. 7). During melting process, the early stage is governed by
conduction. Gradually with liquid fraction increasing, the convection develops and then
dominates the heat transfer. In the not-yet-melted solid phase, conduction is still the main
heat transfer form. The natural convection in the liquid phase causes the upper part of
the PCM to melt faster than the bottom part, and, eventually modifies the shape of the
solid-liquid interface. In this work, the Rayleigh number Ra is of the order of 108. As a
result, the convection plays an important role during the heat transfer. In the next section
(Section 2.2), we will present the numerical model construction and then in Section 3 the
detailed implementation on GPU.

Figure 1: Experiment enclosure.

2.2 Model construction

2.2.1 The governing equations

For the entire melting process, we assume that the liquid is Newtonian and incompress-
ible, and assume that both the solid and the liquid phases have the same heat capac-
ity. According to Voller et al. [33], the governing equations that describe melting phase
change are in the following forms:
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Table 1: Thermophysical properties of n-octadecane used for simulation [7].

Property Value

Melting temperature Tf 28.0[◦C]

Latent heat λ 1.25×105[J/kg]

Specific heat Cp 1250[J/(kg·◦C)]

Thermal conductivity k 0.2[W/(m·K)]

Density ρ 800[kg/m3]

Kinematic viscosity ν 1×10−5[m2/s]

Thermal expansion coefficient β 0.002[K−1]

Thermal diffusivity α 2×10−7[m2/s]

Continuity equation:
∂ρ

∂t
+∇· (ρ~u)=0; (2.1)

Momentum conservation:

∂(ρ~u)

∂t
+∇· (ρ~u~u)=−∇p+∇· (µ∇~u)+~S1+~S2; (2.2)

Energy conservation:

∂
(
ρCpT

)

∂t
+∇·

(
ρCpT~u

)
=∇·(k∇T)+S3, (2.3)

where µ is the dynamic viscosity, Cp, k, ~u are specific heat, heat conductivity and macro-

scopic velocity. ~S1, ~S2 and S3 are source terms due to the presence of phase change cou-
pled by natural convection.

In the governing equations, because of the aforementioned existence of phase change,
the critical point to be determined during the simulation is whether the advection terms
will appear or not. In order to achieve this requirement, Brent et al. [19] devises the source

terms ~S1 in momentum equation to have a form such as: ~S1= A~u. Moreover, the second
source term S2 is introduced by buoyancy, which is S2=ρgβ(T−Tr) and Tr is a reference
temperature. The momentum equation is then rewritten as:

ρ
∂~u

∂t
+ρ(~u·∇)~u=−∇·p+µ∇2

~u+A~u+ρgβ(T−Tr). (2.4)

A can be described by two forms: Carman-Kozeny form or simplified linear form
(Eq. (2.5)). The symbol l is the liquid fraction, ǫ′ and C are two simulation dependent
constants, the former is used to avoid the division by zero and the latter to describe the
morphology of the porous solid-liquid interface [19]. By using this definition of A, the
term A~u varies gradually between 0 and a relatively high value according to the liquid
fraction in a cell. As a consequence (depending on the magnitude of constant C), A~u
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dominates the other terms in the momentum equation. From a physical point of view,
this process depicts the velocity evolution during the phase change

A=







−C
(1−l)2

(l3+ǫ′)
Carman-Kozeny form,

−C(1−l) simplified linear form.

(2.5)

The source term S3 in the energy equation will be analyzed in Section 2.2.3. In the
current simulation, the continuity equation and momentum equation will be solved by
lattice Boltzmann method and the energy equation by finite differences.

2.2.2 Lattice Boltzmann equation

The lattice Boltzmann equation is initially derived from the lattice gas automata (LGA)
theory, and it is also considered as a specially discretized form of the Boltzmann equa-
tion in time, space and particular velocity space [35]. The LBM is a mesoscopic CFD
method which keeps some simplified microscopic molecular dynamics properties to re-
cover the macroscopic hydrodynamics results. In the LBM, the physical region is divided
into regular spacial lattices, each of which is connected to its neighbours through a set
of predefined molecule velocities’ vectors ~eα, where α(= 0,1··· ,n) is the quantity of dis-
crete velocities, and for the still molecules, ~e0 = 0. It describes the temporal evolution
of the molecule distribution functions fα as a result of the collision and the propagation
(Eq. (2.6))

| fα(~x+~eαδt,t+δt)〉−| fα(~x,t)〉
︸ ︷︷ ︸

Propagation

= Φ
︸︷︷︸

Collision

, (2.6)

in which, ~x is the position and δt is the time step.
The broadly employed single relaxation time LBGK model is:

| fα(~x+~eαδt,t+δt)〉−| fα(~x,t)〉=− 1

τ′
[
| fα(~x,t)〉−| f eq

α (~x,t)〉
]
, (2.7)

where τ′ is the relaxation time.
The equilibrium distributions f

eq
α are calculated by:

f
eq
α =ρωα

[

1+
~eα ·~u
c2

s

+
( ~eα ·~u)2

2c4
s

− u2

2c2
s

]

, (2.8)

where ωα is the weight coefficient, c2
s =RT is the sound speed, and ~u is the macroscopic

velocity. In addition, the macroscopic density and momentum are given by:

ρ=∑
α

fα and ρ~u=∑
α

~eα fα. (2.9)

In the LBGK model, each physical value evolves towards its equilibrium state with the
same relaxation time τ′, which means the LBGK model has a unchangeable unit Prandtl
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Figure 2: D2Q9 scheme.

number and thus the transports of momentum and heat are non-adjustable. This restric-
tion makes the LBGK model less flexible as for a CFD method. To address this problem,
Chen et al. proposed a method to make the Prandtl number adjustable within a range
(from 0.59 to 3.3) when the small temperature difference limit satisfied [37].

D’Humières proposed an another collision model with multiple-relaxation-time (MRT).
In the MRT model, the discrete velocities (eα) are identical as in the LBGK model, whereas
the different moments — relating to macroscopic physical values — have different relax-
ation times. The MRT model is mathematically more complex than LBGK, however it is
proved to possess better numerical stability [21].

In the current simulation, we choose the D2Q9 discrete velocity mode (two dimen-
sions, nine predefined propagation directions, see Fig. 2). The~eα are given as:

~eα=







(0,0) α=0,

e(cos[(α−1)π/2] ,sin[(α−1)π/2]) α=1−4,

e(cos[(2α−9)π/4] ,sin[(2α−9)π/4]) α=5−8.

(2.10)

The updating rule of the MRT-LBM is given by Eq. (2.11) [21], the vector | fα〉 is
mapped to a moment vector space by a well-designed linear transformation (Eq. (2.12)
and Eq. (2.13)). Within the D2Q9 stencil, the moment vector |mα〉 is described by
Eq. (2.12) [24], where ρ is the density, e is related to energy, ǫ is a fourth order moment
related to energy square, jx, jy are momentums in x and y directions respectively, qx, qy are
related to the energy flux in x, y directions, and pxx, pxy are higher order terms related to
the stress tensor. In the MRT model, the collision process actually takes place in moment
space; after collision, the moments are mapped back to distribution functions; and then
the propagation is performed within particle density space.

| fα(~x+~eαδt,t+δt)〉−| fα(~x,t)〉=−M
−1 ·S·

[
|mα(~x,t)〉−|meq

α (~x,t)〉
]
, (2.11)

|mα〉=M | fα〉=
(
ρ,e,ǫ, jx,qx, jy,qy,pxx,pxy

)⊤
, (2.12)
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M=

















1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 2 2 2 2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

















. (2.13)

In Eq. (2.11), |meq
α 〉 are the equilibrium quantities. For the conserved quantities, m

eq
0 =

ρeq=ρ, m
eq
3 = j

eq
x = jx and m

eq
5 = j

eq
y = jy; and for the other non-conserved values, equilibrium

states are calculated by Eq. (2.14) [21]:

m
eq
1 = eeq=−2ρ+3

(

j2x+ j2y

)

, m
eq
2 =ǫ(eq)=ρ−3

(

j2x+ j2y

)

, (2.14a)

m
eq
4 =q

(eq)
x =−jx, m

eq
6 =q

(eq)
y =−jy, (2.14b)

m
eq
7 = p

(eq)
xx =

1

3

(

j2x− j2y

)

, m
eq
8 = p

(eq)
xy =

1

3
jx jy. (2.14c)

The sound speed in lattice units is cs =1/
√

3.
In Eq. (2.11), S is the collision matrix, which is a diagonal square matrix:

S=diag
(

sρ,se,sǫ,sjx ,sqx ,sjy ,sqy ,spxx ,spxy

)

=diag(0,s2,s3,0,s5,0,s7,s8,s9), (2.15)

each diagonal element of ~S is one relaxation factor for different moments. According to
the reference [24], s8 and s2 are controlled by the shear viscosity ν

s8 =
2

6ν+1
, (2.16)

and by the bulk viscosity ζ

s2=
2

12ζ+1
. (2.17)

Furthermore,

s5= s7=
8(2−s8)

(8−s8)
and s9= s8. (2.18)

In addition, as long as they are within the interval (0,2) [24], s2 and s3 can be chosen
arbitrarily to enhance the stability of the simulation.

Finally, the collision matrix ~S we used for the simulation is

~S=diag

(

0, 1.64, 1.54, 0,
8(2−s8)

(8−s8)
, 0,

8(2−s8)

(8−s8)
, s8, s8

)

. (2.19)
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The LBE can be numerically very stable when solving isothermal flow. However, as
solving thermal-hydrodynamics problems, the thermal LBE (TLBE) models are more vul-
nerable to numerical instabilities. These instabilities are attributed to a spurious algebraic
coupling between the shear and energy modes of the linearised evolution operator. This
spurious algebraic coupling is rooted in the basic features of LBE. As a result, in order to
improve the numerical robustness, Lallemand and Luo proposed a hybrid thermal lat-
tice Boltzmann equation (HTLBE) and proved that it has better numerical stability than
the other energy-conserving Boltzmann models [36]. In the HTLBE model, the mass and
momentum conservations are solved by MRT-LBE and the temperature by finite differ-
ences [22, 23]. Through the Chapman-Enskog analysis, we can successfully recover the
macroscopic conservation equations (Eq. (2.1), Eq. (2.2)) from this HTLBE. In the current
simulation, as a result, the HTLBE model is employed.

2.2.3 Energy equation

Phase change

During melting, the heat is stored in the form of latent heat of fusion. Therefore, the total
energy h is the sum of sensible heat and latent heat as given in Eq. (2.20). We assume
that the heat capacity of liquid and solid phases are equal, denoted by Cp. L refers to the
latent heat content.

h=CpT+L, (2.20)

with L= l ·λ, and l is the liquid fraction.

The energy equation in the form of total energy (h) is given by:

∂ρh

∂t
+∇·(ρh~u)=∇·(k∇T). (2.21)

The thermal conductivity k is treated as constant during the melting. As Boussinesq
approximation is assumed, the density temperature dependence is only taken into ac-
count in the buoyancy force term.

After mathematical operations on Eq. (2.20) and Eq. (2.21), the energy equation be-
comes:

∂T

∂t
+∇·(~uT)=α∇2T−S3, (2.22)

where S3 is:

S3=
∂(L/Cp)

∂t
+∇·

(
~uL

Cp

)

. (2.23)

S3 comprises the effect of latent heat change. As stated before, the material during melt-
ing phase change absorbs the heat and stores it as latent heat of fusion in a narrow range
of temperature. This can be considered as a heat sink as described by Eq. (2.23).

In the solid and liquid phase, the term ∇·(~uL
Cp
) is equal to 0, while along the liquid-

solid interface, this term is not 0 but sufficiently small to be neglected.
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In order to keep the units consistent with LBM, the energy equation must be trans-
formed to dimensionless form, by choosing the following reference quantities and di-
mensionless numbers:

ure f =α
√

Ra/H, Tre f =∆T=Th−Tf , Hre f =H,

Ra=
gβ∆TH3

να
, Pr=

ν

α
, Ste=

Cp ·(Th−Tc)

λ
.

Then the dimensionless form of the energy equation is

∂T∗

∂t∗
+∇∗ ·(~u∗T∗)=Ra−

1
2 ∇∗2T∗−S∗

3 , (2.24)

with the source term S∗
3 :

S∗
3 =

1

ρ·Ste

∂l

∂t∗
, (2.25)

where t∗ is the dimensionless time, and the liquid fraction l is defined as

lN =







1, T∗N ≥T∗
f +

1−lN−1

Ste ,

0, T∗N ≤T∗
f − lN−1

Ste ,

(T∗N−T∗
f )·Ste+lN−1, otherwise.

(2.26)

Consequently, the temperature at time step n is used to update liquid fraction l, in or-
der to get the source term S∗

3 in Eq. (2.24), then using value S∗
3 to calculate the temperature

in time step n+1 and so on.

Discretization

For coupling with LBM, the energy equation furthermore needs to be discretized. During
this step, the reference length and time are selected as the lattice size δx and time step δt.
Because the lattices are in the form of a square, so δy= δx. Based on those two reference
values, the computation domain has a height in lattice unit Ny =1/δx and the maximum
time steps to achieve the prescribed melting process is t∗/δt.

The energy equation in lattice units is:

∂Tlb

∂tlb
+∇·(~ulbTlb)=

δt

δ2x
Ra−

1
2 ∇2 ·Tlb−

1

ρ·Ste

∂l

∂tlb
, (2.27)

where the subscript lb means the lattice units, and Tlb =T∗, ρ=1.

The finite difference method is used to discretize the diffusion and advection terms.
As suggested by Lallemand and Luo [24], for a D2Q9 simulation, the nine point finite-
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difference operators are used to get the gradients and Laplacian:

∂xTlb |(i,j)=Tlb(i+1, j)−Tlb(i−1, j)− 1

4
[Tlb(i+1, j+1)

−Tlb(i−1, j+1)+Tlb(i+1, j−1)−Tlb(i−1, j−1)], (2.28)

∂yTlb |(i,j)=Tlb(i, j+1)−Tlb(i, j−1)− 1

4
[Tlb(i+1, j+1)

−Tlb(i+1, j−1)+Tlb(i−1, j+1)−Tlb(i−1, j−1)], (2.29)

∇2Tlb |(i,j)=2[Tlb(i+1, j)+Tlb(i−1, j)+Tlb(i, j+1)+Tlb(i, j−1)]− 1

2
[Tlb(i+1, j+1)

+Tlb(i−1, j+1)+Tlb(i−1, j−1)+Tlb(i+1, j−1)]−6Tlb(i, j). (2.30)

2.2.4 Problem solving

The melting goes through three stages: (1) pure solid phase; (2) melting stage; (3) pure
liquid phase. In the pure liquid stage, there exists the natural convection. The temper-
ature equation and the LBE must be coupled by adding buoyancy F =

√
gβ∆Tlb to the

momentum along y direction (jy). In solid phase stage, there is no flow, so the calculation
of LBE must stop. As a result, the simulation has to do three steps successively during
each time step: checking the liquid fraction of each lattice; calculating the temperature;
deciding whether calculating the velocity field or not according to the liquid fraction of
each lattice.

3 Nvidia GPU hardware and implementation

This section addresses two topics. The first part gives a concise introduction to the Nvidia
CUDA technology. The second one presents the implementation of the algorithm.

3.1 GPU with CUDA architecture

3.1.1 CUDA program pattern

A modern GPU is characterized by its parallel computing ability, its high data through-
put as well as its programmable features. However it was difficult to perform general
purpose computations on GPUs before the release of the Nvidia’s CUDA technology.
The CUDA is a general purpose parallel computing technology, which comes with a set
of development tools such as high level language compilers. In this paper, The CUDA C
is employed.

The code written using CUDA C is of two types:

• Host code, which consists of functions running on the CPU;

• Device code, which includes: (1) functions (known as kernel) invoked by host func-
tions and (2) device functions invoked by kernels and other device functions. De-
vice code is executed on the GPU.
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Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (0,2) Block (1,2) Block (2,2)

Grid

Thread (0,0) Thread (1,0) Thread (2,0)

Thread (0,1) Thread (1,1) Thread (2,1)

Thread (0,2) Thread (1,2) Thread (2,2)

Block (2,2)

Figure 3: CUDA Block of threads and grid of blocks.

Kernels are launched and executed in parallel by designating an execution pattern
through a set of threads. The threads are bundled in the form of thread blocks. Blocks with
equal size are organized into grids, see Fig. 3. Threads and blocks are indexed with two
built-in up to 3-dimensions variables: threadIdx and blockIdx.

3.1.2 Memory types

Depending on the accessibility to the memory by kernels, the total memory space on the
GPU is categorized by registers, shared memory, constant memory, texture memory and
global memory, see Fig. 4. Global memory can be accessed by each thread during the

Grid

Thread block

Local

memory

Shared

memory

Global

Memory

Constant

Memory

Texture

Memory

Thread

Figure 4: Memory structure of GPU.
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runtime of the kernel. Global memory is quantitatively abundant but has the slowest
access speed. Therefore, avoiding unnecessary global memory readings and writings
should be kept in mind when programming. Registers are used to store local variables.
They are not addressable and programmers need to pay attention to prevent them from
spilling. Shared memory is used to store the local variables which are declared as shared.
It is addressable and as fast as register.

In addition, there are two types of read-only memory that can be accessed by all
the threads during the execution of a kernel, one of which being constant memory. The
constant memory space is included and addressed in device memory. However, this
memory is cached.

3.1.3 CUDA hardware

A CUDA enabled GPU contains several Streaming Multiprocessors (SMs). Each SM has
its own register, shared memory, constant cache, as well as several CUDA cores. The SM
processes the threads within a block by groups of 32, called warps. In this study, we use a
Tesla C2050 Nvidia GPU. Its technical specifications are shown in Table 2.

Table 2: Specifications of the Tesla C2050.

CUDA Capability 2.0

Number of SMs 14

Number of CUDA core per SM 32

Constant memory 65536 bytes

Shared memory per block 49152 bytes

Registers available per block 32768

Global memory 3072 MB

Maximum number of threads per SM 1536

Maximum number of threads per block 1024

Maximum dimension of a block 1024×1024×64

Maximum dimension of a grid 65535×65535×65535

3.2 Implementation

Fig. 5 shows the diagram of nodes. The blue frame embodies the physical boundary. The
nodes enclosed by the blue frame are the calculation domain.

The lattices’ topology in the computation domain must be mapped to the threads of
the execution grid on the GPU [28]. This fulfills the requirement of thread-level paral-
lelism of CUDA GPU [29]. For our 2-dimensional simulation (LX×LY), a one dimen-
sional block of size LX and one dimensional grid of size LY are chosen. We set LX being
the major dimension and being a multiple of the warp size, which can provide us a suf-
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Figure 5: The propagation and temperature scheme.

ficient threads occupancy rate, a coalescence of global memory access and an easy index
to the nodes [30].

3.2.1 Data and memory utilization

The global memory is accessed via 32, 64, or 128 byte aligned memory transactions. The
warp coalesces the treads memory accesses into one or more memory transactions ac-
cording to the word size accessed by a single thread and the distribution of the memory
addresses. In addition, for the GPU with capability 2.0, the global memory is cached in
L1 and L2 by default†. The memory is accessed via 128 byte transactions if cached in both
L1 and L2; and is accessed via 32 byte transactions if just cached in L2. As a result, a scat-
tered memory addresses distribution across the threads will result in many unused data
transactions and less cache hits, which can significantly impact the memory throughput.
In this simulation, for each node, nine velocities, one liquid fraction and one temperature
value need to be stored in the global memory, which represents eleven single-precision
floating-point variables per node. We use a single memory block partitioned into three
parts in order to store the distributions array, the temperature array and the liquid frac-
tion array (see Fig. 6).

The energy equation is solved by finite differences. Because the data stored in the
shared memory automatically broad themselves to all the threads in a block, in order to
decrease the global memory transactions, we use the shared memory to store the temper-
atures.

†For GPU with capability 3.x, the global memory accesses are cached on L2 and for capability 3.5 and higher,
can also be cached in the read-only data cache



1214 W. Gong, K. Johannes and F. Kuznik / Commun. Comput. Phys., 17 (2015), pp. 1201-1224

�����������	� 
��������� ��������������	

Figure 6: Data structure.

In the LBM implementation, the propagation step also requires the neighbor’s rele-
vant distributions information, but all those information are local to each thread, thus
just need to be stored in registers. As described in Ref. [30], we also utilize in-place prop-
agation scheme to perform propagation in this simulation (see circle point in Fig. 5).

For the phase change, the liquid fraction information is also stored in registers. In
the liquid phase, the LBM collision and propagation are fully performed, and in energy
equation, the advection term is valid. In the solid phase, the LBM collision and propa-
gation are disabled, and distributions swap with their opposite counterparts. The macro
velocities are set to zero and thus the advection term in energy equation disappears.

3.2.2 Boundary conditions and simulation procedure

On the physical walls (blue frame in Fig. 5), for the LBM, we choose the halfway bounce
back scheme. The temperature boundary conditions are applied on the physical walls,
which are between two lattices. The boundary condition of the bottom side is:

Ti,−1=
21Ti,0+3Ti,1−Ti,2

23
, (3.1)

and of the left vertical wall is:

T−1,j=
8Th−6T0,j+T1,j

3
. (3.2)

Besides, the Ti,LY and TLX,j can be calculated in the same way.
The melting process simulation obeys the following procedure:

1. Initialize model;

2. Execute the propagation, and transfer the current lattice’s temperature and its
neighbors’ temperatures to shared memory;

3. Apply boundary conditions;

4. Compute the liquid fraction and define the node status: liquid or solid;

5. if the node status is liquid:

• Compute the moments of the MRT model, add half of the buoyancy force
(0.5

√
gβ∆Tlb) to momentum component on y direction jy;

• Collide;
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• Add the second half of the buoyancy force to the momentum component jy;

• Compute temperature using the discretized energy equation with advection
term;

else:

• Swap distributions fα on their proper opposite directions;

• Compute the temperature using the discretized energy equation without ad-
vection term;

6. Map moment space to discrete velocity space;

7. Update each node for the next iteration.

4 Results and discussion

This section addresses the model validation (Section 4.1), the results of heat transfer and
natural convection during melting (Section 4.2) as well as the performance of this parallel
implementation (Section 4.3).

4.1 Model validation

4.1.1 Experiment configuration

Experimental data are used for the model validation. The experiment was performed on
a transparent enclosure filled with n-octadecane (see Fig. 1 and Fig. 7(a)). The diagram of
the experiment equipment is shown in Fig. 7(b). A CCD camera and a laser beam were
connected by a synchronizer to capture images of the melting process. No thermocouple
was embedded in the cavity in order to avoid impacting the natural convection flow in
the liquid phase. Instead, we chose to use two heat flux meters on the heating sides of
this enclosure, thus guaranteeing the reliability of average Nu number evolution along
the walls. The other sides apart from the top and the front were well isolated using
asbestos and thereby considered as adiabatic. Both captured images and heat flux data
were registered by a computer controlled by the LaVision and the Labview respectively.
Experimental parameters are listed in Table 3.

Table 3: Experimental parameters.

Th [◦C] Tc[
◦C] H[m] L[m]

35.0 27.8 0.152 0.03
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Figure 7: Experiment configuration and diagram.

4.1.2 Model validation

The convergence test was performed under different mesh resolutions. Fig. 8 displays
the relative differences of Nu number between the simulation and the analysis [20] at
time τ = 0.00312 (5000s). All the simulations were carried out with a fixed viscosity of
0.01 and the Mach number equal to 0.1. A satisfactory quadratic convergence in space is
achieved by the model.

In Fig. 9, melting interface positions are shown at five different instants. Both exper-
imental data and simulation results are displayed. The conversion between the physi-
cal time and the dimensionless time (τ = FoSte) is expressed by t=

(
H2 ·FoSte/α

)
. The

simulation curves are in good agreement with the experimental points. At the onset of
melting, n-octadecane is solid, so the melting is just driven by pure conduction. The
first curve at dimensionless time equal to 0.00022(353.0s) is parallel to the vertical heat-
ing wall. On the bottom part of the interface, when 0.1< y< 0.6, the simulation results
embody the position of the interface. Notwithstanding, the upper portion of the curves
retreats slightly more slowly than in the experimental counterparts. This might be due to
the fact that the top of the cavity is not perfectly insulated.

Fig. 10 shows the average Nusselt number of the hot vertical wall. The Nusselt num-
ber is defined as the amount of heat transferred:

Nu=−
∫ 1

0

(
∂T∗

∂x∗

)

dy∗.

The Rayleigh number is Ra=2.48×108 and the Prandtl number is Pr=50. The black
long-dashed line is from the correlation by Bejan et al. [20]. All the three sets of results
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Figure 9: Evolution of melting interface with the dimensionless time: comparison between simulation and
experiment. Ra=2.48×108, Pr=50, Ste=0.072.

follow the same pattern. In the beginning, the average Nu starts with a high value, and
decreases rapidly with the same order of τ−1/2 as the pure conduction, known as simpli-
fied solution of Stefan problem. Later, when the natural convection emerges, the decrease
of the Nusselt number becomes moderate, as shown by the curves’ gradients on Fig. 10.
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Figure 10: Average Nu number on the left vertical isothermal wall (Th) during melting of n-octadecane.
Ra=2.48×108, Pr=50, Ste=0.072.

Within this elapse of time, the conduction and convection not only exist simultaneously
but also exert the same influence on the heat transfer effect. As aforementioned, when
convection dominates the melting process, Nu becomes stationary with respect to time.
Comparing with Fig. 9, when τ=0.00022, the solid-liquid interface has already exhibited
the existence of convection, at the same time, Nu begins its transition.

4.2 Simulation results

Fig. 11 shows the temperature contours at different instants. In most published papers,
simulations of melting process driven by natural convection are limited, within low Ra
with order of magnitude of 107 and low Pr number [31–33]. From the contours, the con-
vection drags the heated melted n-octadecane to the top and the liquid phase is stratified.
However, this stratification is different from the results of Okada [27], in which the con-
tour of temperature in the middle of the liquid cavity is parallel to the horizontal wall
and the Ra is of order 106. In contrast here in Fig. 11(a), the contours are more prone to
be vertical. The reason is the higher Ra number in our study and thus a larger degree of
convection: as soon as the melted n-octadecane is heated up, the buoyancy force drives it
upwards. At the same time, since at the bottom part the flow cavity is quite narrow, the
flow rises fast.

From Fig. 12(a), we notice there are two eddies appearing at the height about 0.65
and 0.80. The up rising liquid ultimately reaches the top wall, and turns back. However,
when it encounters the newly melted uprising liquid, there is not enough space to let it
go down. With the melting developing, the liquid cavity enlarges, and one eddy disap-
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Figure 11: Temperature contours at four different τ. Ra=2.48×108, Pr=50, Ste=0.072.

pears, see Figs. 12(b) and 12(c). The solid-liquid interface finally reaches the cold wall and
shrinks towards the right bottom corner. When the interface becomes small enough, the
large amount of downward cold flow from the cold wall detaches from the solid-liquid
interface. This amount of detached flow encounters the upward hot flow, which eventu-
ally causes several eddies to emerge between y= 0.35 and y= 0.65 (See Fig. 12(d)). We
can also note that the isothermal lines at the corresponding positions in Fig. 11(d) become
distorted due to those eddies.

From this analysis, we can find that the melting process with higher Ra number has
distinct characteristics from that with lower Ra number. When the Ra number is lower
than 107 [27], the natural convection is just a single circulation, the central part of the
liquid cavity remains still. In the present simulation, since both the Ra and Pr numbers
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Figure 12: Streamlines at four different τ. Ra=2.48×108, Pr=50, Ste=0.072.

are high, 2.48×108 and 50 respectively, the natural convection manifests a different flow
pattern.

4.3 Performance of implementation

A Nvidia Tesla C2050 GPU was employed as platform to test the simulation efficiency.
Its hardware properties were shown in the previous section (Table 2). Based on the
CUDA bandwidthTest utility, the maximum device to device memory band width is
117.93GB/s.

Fig. 13 shows the performance of the present implementation under different lat-
tice resolutions. The units of the left y axis are the million lattices updates per sec-
ond (MLUPS). The right y axis corresponds to the throughput for device to device
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Figure 13: Performance of implementation.

throughput. The throughputs at different lattice resolutions with respect to the maxi-
mum value (117.93GB/s) range from 44.0% to 52.5%, and the simulation delivers up to
703.31 MLUPS.

5 Conclusion

In this paper, an efficient solver was designed using hybrid thermal LBM to numerically
simulate the melting process. The MRT-LBM model was used to calculate the velocity
field, and the enthalpy method was employed to simulate the melting phase change.
This solver was optimized in order to perform on a Nvidia GPU based on the CUDA
architecture (model Tesla C2050).

Experiments were also carried out to validate the numerical model and its imple-
mentation. The present simulation results are in good agreement with the experimental
results, as well as the published analytic results. The temperature contours and stream-
lines were also presented, which showed that the melting driven by natural convection
under high Ra and Pr numbers demonstrated strong convection phenomena and differ-
ent characteristics from the previous published results with lower Ra and Pr numbers.

The performance tests under different grid resolutions showed that the present imple-
mentation on the Tesla C2050 GPU delivered up to 703.31 MLUPS. The device to device
data throughput accounted for up to 52.5% of the hardware’s maximum throughput.

The next paper will be focused on the GPU implementation on 3-dimensional melt-
ing.
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