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Abstract. This paper presents a fast surface voxelization technique for the mapping
of tessellated triangular surface meshes to uniform and structured grids that provide
a basis for CFD simulations with the lattice Boltzmann method (LBM). The core al-
gorithm is optimized for massively parallel execution on graphics processing units
(GPUs) and is based on a unique dissection of the inner body shell. This unique defini-
tion necessitates a topology based neighbor search as a preprocessing step, but also en-
ables parallel implementation. More specifically, normal vectors of adjacent triangular
tessellations are used to construct half-angles that clearly separate the per-triangle re-
gions. For each triangle, the grid nodes inside the axis-aligned bounding box (AABB)
are tested for their distance to the triangle in question and for certain well-defined
relative angles. The performance of the presented grid generation procedure is su-
perior to the performance of the GPU-accelerated flow field computations per time
step which allows efficient fluid-structure interaction simulations, without noticeable
performance loss due to the dynamic grid update.
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1 Introduction

CFD methods rely on the discretization of the continuous governing equations into dis-
crete, finite approximations, on either Lagrangian grids, Eulerian grids, or in meshless
formulations. Lattice Boltzmann methods, as addressed in the present publication, dis-
cretize the governing equations on an equidistant Eulerian grid. Grid points of a compu-
tational domain used for Lattice Boltzmann CFD implementations can be of a variety of
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different kinds. Those points representing a fluid particle ensemble are considered fluid
particles, whereas other points can represent a slip wall, a no-slip wall, an inflow or even
moving velocity boundaries. Since the grid itself is static and does not change over time,
it is - apart from proper dynamic boundary conditions at the body surface - the chang-
ing character of the points through which a moving body’s motion is manifested. Fig. 1
shows fluid particles as black circles and solid body particles as red dots. Black circles
overlaid with red dots signify solid body particles from previous time steps, where a
lighter shade of red indicates solid body particles from iterations further back in time.

Figure 1: At each time step a moving body (red arrow) has to be mapped to the Cartesian grid. Hues of red
indicate the changing grid node domain occupied by the body over time.

The grid generation algorithm that is presented in this paper is designed to be in-
tegrated seamlessly into a GPU-based CFD solver, the efficient Lattice Boltzmann envi-
ronment ELBE [1]. The ELBE solver solves for three-dimensional turbulent free surface
flows, including effects of viscosity and turbulent dissipation. Interactions of fluid and
structure are considered as well. In transient CFD simulations with fluid-structure in-
teractions, the solid body points have to be updated at each time step. The GPU-based
implementation of ELBE allows for very competitive simulation times. Hence, the per-
formance of the grid update algorithm and its implementation is crucial for successful
simulations of challenging FSI problems. The main goal of this contribution is to develop
a grid generation algorithm, that is

• Real-time capable — to rapidly voxelize the surface of a geometric object into a
surface voxel representation in (or near) real time to be included in near-real time
CFD simulations.

• Error-free and robust — to minimize the errors and the number of misidentified
voxels, a source of potential instabilities in the numerical simulation.

• Efficient and extensible — to be convenient to integrate into a wide range of other
CFD applications, e.g. SPH solvers.

After a brief literature review in Section 2, the following sections give further details of
the necessary surface mesh preparations, details of the concrete algorithm and a detailed
analysis of the performance of the algorithm, including numerical experiments.
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2 Related work and key ideas of the proposed algorithm

The current paper describes a method to voxelize triangle meshes for Lattice Boltzmann
CFD simulations on Eulerian grids. However, because voxelization is a very important
topic for all sorts of different applications, multiple such methods have been proposed
in recent years. Many of these even focus on very efficient GPU implementations, as the
underlying technique (voxelization) is — by nature — related to rendering purposes. In
order to motivate the need for yet another GPU-accelerated grid generation technique,
we briefly review the current state-of-the-art in voxelization in the following.

2.1 An attempt of classification

Key characteristics of the proposed voxelization algorithms have to be identified, in order
to systematically review the relevant literature. Apart from the purpose of voxelization,
which can be but is not limited to rendering, collision detection, or grid generation for
numerical solvers, two characteristics can be identified: (i) the voxelization type (surface
voxelization vs. solid voxelization), and (ii) the utilized acceleration techniques (software
vs. hardware acceleration). This work’s main focus is on hardware accelerated surface
voxelization.

2.1.1 Surface voxelization vs. solid voxelization

The most important feature of voxelization algorithms is the set of voxels that it creates.
In case only the surface of objects is voxelized, surface voxelization, the algorithmic chal-
lenge is to identify as many voxels as possible to obtain a closed surface, but at the same
time mark as little voxels as possible to safe computational costs and memory. The fun-
damentals of surface voxelization techniques have been discussed in e.g. Cohen-Or [2]
and Huang [3]. The latter publication also includes a first basic algorithm for the vox-
elization of polygon meshes. Each mesh triangle is turned into a set of voxels: (i) inside
certain well-defined spheres that surround the vertices, (ii) inside three cylinders that
surround the edges, and (iii) between two planes defined by an offset h from the base
triangle. The topological approach of Laine [4] uses geometric intersection targets that
are associated with each voxel to identify those specific voxels that can be considered
as constituting the interface between the inside and outside domains. By utilization of
differently shaped intersection targets, the connectivity of the generated voxel surface
can be changed and a number of traditional voxelization techniques can be reproduced.
However, this approach is non-directional and does not allow for an identification of in-
ner nodes. Opposite to surface voxelization, solid voxelization methods identify all the
interior voxels of a solid body. Solid voxelization is not in the scope of this work, as we’re
interested in information on the boundary nodes only. For a detailed review on solid
voxelization methods, the reader is referred to Liao [5].
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2.1.2 Hardware acceleration

While the first publications on surface and solid voxelization were of theoretical nature,
a lot of work was also conducted on a proper hardware acceleration of these techniques.
Naturally, as many of the applications of such voxelization algorithms emerged from
rendering and visualization tasks, graphics hardware was used very early to accelerate
the voxelization process. E.g., Karabassi et al. [6] present a fast voxelization algorithm,
which is based on the depth buffers (Z-buffer) of the graphics card. Their method can
be accelerated by taking advantage of widely available, low-cost hardware. However, it
can not reproduce inner cavities as they can not be seen from the depth buffers. Simi-
larly, Fang and Chen [7] presented three solid/surface voxelization algorithms that have
been accelerated with dedicated graphics hardware, the SGI Reality Engine. In 2006,
Eisemann [8] presented a voxelization technique based on existing rendering steps in the
graphics pipeline. The method employs a texture map, to store voxel information in an
RGBA buffer and utilizes the accelerator’s resources efficiently but is limited to graph-
ics applications where the x,y dimensions are much larger then the z dimension. It also
suffers from occasional wholes in the voxelized surface due to its roots in rendering tech-
nology. While being very effective, such hardware-accelerated algorithms are optimized
for specific graphics cards and lack the desired extensibility to new hardware at the same
level of relative performance. Modern GPU programmability allows the same level of
efficiency for much more generally applicable approaches.

Schwarz and Seidel [9] present CUDA implementations of data-parallel algorithms
for both surface and solid voxelization. They present a new triangle/box overlap test
and claim that their method outperforms previous GPU-based approaches by up to one
order of magnitude. More recently, Rauwendaal and Bailey [10] presented a voxelization
method based on the standard graphics pipeline and implemented it in OpenGL. They
claim that their method can be integrated very well in existing OpenGL applications and
that it is both robust and efficient. Pantaleoni’s [11] blending-based rasterization uses a
two staged process of coarse and fine rasterization. Tiles are generated by a triangle/box
overlap test and the containing triangles are sorted for faster processing in the fine raster
step. The performance of this method is impressive and it represents a state of the art
solution for surface voxelization.

2.2 Grid generation in the scope of Lattice Boltzmann solvers

Existing LBM grid generators include serial and parallel implementations of voxelization
methods of various kind on both CPU and GPU architectures. However, the employed al-
gorithms and models seem to be quite independent on the research that took place in the
field of graphics processing and visualization, mostly due to historical reasons. One of
the reasons might be that, up to now, most of the state-of-the-art Lattice-Boltzmann mul-
tiphysics solvers still are CPU-based, so that the published voxelization techniques (most
of which were directly related to early GPU hardware) were not applicable. Nevertheless,
the state-of-the-art in LBM grid generation will be briefly reviewed in the following.
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The authors of [12] and [13] describe three distinct methods for the LBM grid gener-
ation around complex three-dimensional bodies and apply them for 3D fluid-structure
interaction problems with an LBM-CPU solver on octree-type grids: (i) half-plane based
algorithms, that are based on the fact that for convex geometries, all edges between ar-
bitrary pairs of vertices are located inside the geometry. One of the main drawbacks of
this method consequently is the limitation to convex polyeders [14]; (ii) the solid-angle-
algorithm, that sums up the relative angles from the point under consideration to each
polyeder vortex. The result indicates if the point is inside or outside the polyeder, see [15].
The method potentially can be extended to 3D [16], but is very inefficient and does not
necessarily identify grid points that are exactly located on the polyeder edges; (iii) ray
crossing algorithms, that emit a number of rays from the point under consideration and
count the ray intersections with the polyeder surface [17]. Odd or even numbers of ray
intersections with the surface indicate the inside or the outside, respectively, of a closed
body. However, this method suffers from poor scalability for large numbers of triangles.
Moreover, additional care has to be taken for the special case that the ray pierces a grid
node and multiple triangles are intersected. In this case, the number of ray intersections
is meaningless because it is not trivial to determine if the ray changed its inside/outside
state at that point, it might have merely touched the surface. Szucki and Suchy’s CPU
approach on voxelization [18] uses a similar raycasting method, which creates a solid
voxelization, essentially being based on the work of Thon [19]. Odd or even numbers
of ray intersections with the surface indicate the inside or the outside, respectively, of a
closed body. Since their method’s performance decreases with a rising number of sur-
face triangles and is of the order of seconds for just 10,000 triangles it is not suitable for
real-time lattice updates. Inclan [20] pursued an approach based on a uniform and struc-
tured Cartesian grid produced by CartGen† from an STL (StereoLithography Interface
Specification or Standard Tessellation Language) [21] file. The generated mesh blocks
are filled with lattice nodes according to the applied boundary condition at the consid-
ered interface. All processing steps are executed subsequently and in serial on the CPU.
The final output data is saved as a VTK (Visualization Toolkit) file and used by the LBM
solver. All in all, the previously described techniques are all CPU-based and focus on
solid voxelization.

2.3 Proposed algorithm: ePiP, an efficient point in polygon tester

The more recent hardware accelerated solutions reviewed in Section 2.1.2 can be used to
generate Lattice Boltzmann grids efficiently. However, a tailor made solution was sought
after by the authors of this work to meet the solver’s requirements in terms of accuracy
and extensibility. Moreover, for a better compatibility with ELBE and other current GPU-
accelerated flow solvers, instead of rendering pipelines and/or OpenGL, the nVIDIA
CUDA programming model is to be used for the implementation.

†http://cartgen.sourceforge.net/
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Opposite to most of the previously mentioned voxelization techniques, the require-
ments for voxelizations that are used to create our Lattice Boltzmann grids are very spe-
cial. Ideally, only the first layer of inner body nodes is identified, allowing for a proper
fulfillment of flow field boundary conditions and indirect addressing techniques, so that
only surface voxelization techniques can be applied. Instead of the flow field calculations,
the boundary nodes execute specific operations to satisfy the solid-body boundary condi-
tions. If the surface layer is not closed, the surface is not watertight. If the surface layer is
too thick, more boundary operations are executed than needed. Moreover, the presented
grid generation algorithm could also be run in an inverse mode, identifying the first layer
of fluid nodes in the computational domain. With a reformulation of solid-body bound-
ary conditions, this would allow to remove all inner nodes from both the simulation and
also the data structure, for maximum savings. All this is only possible with the help
of a surface voxelization algorithm. In case that a solid voxelization is required in any
intermediate simulation step, this still can be realized by some state-of-the-art flood fill
algorithms. In the most-complete hydrodynamic LBM model, the D3Q27 LBM model,
every lattice node interacts with its 26 next-neighbors, on equidistant Cartesian grids.
Consequently, the voxelizations that are employed to produce the computational grids
have to be 26-separating, in order to obtain a watertight surface. Opposite to previously
suggested surface voxelization techniques, in addition to the 26-separability, all the iden-
tified voxels need to be in the interior of the solid body. Consequently, our new LBM grid
generation process can be categorized as a hybrid surface- and solid-voxelization tech-
nique, identifying the outmost 26-separated layer of a solid voxelization of the geometric
object. In terms of voxelization performance, race conditions and conflicting memory
accesses that occur in standard overlap tests have to be avoided. Schwarz and Seidel [9]
also identified this problem and used atomic functions and memory buffers in the voxel
update. The algorithm that is presented here avoids the problem by construction.

In the scope of this paper, a novel, very efficient and reliable test is presented, that is
designed for execution on massively parallel processors such as GPUs. On this kind of
hardware, identical instructions are executed on different chunks of data, which is often
referred to as SIMD (single instruction, multiple data) concept. The main design choice
in the development of a novel algorithm is how to split up the global computational
task into small and independent instruction sets that are then processed in parallel by a
number of threads. In the proposed ePiP grid generation algorithm, each computational
thread is assigned with one triangle. For each triangle a local region test within the axis-
aligned bounding box of the triangle yields the identification of body points. To uniquely
define the region of valid inner points for the triangles, it is necessary to construct sepa-
ration planes between adjacent triangles, i.e. for each edge of any given triangle. With
this information it is possible to assign unique parts of the body domain to triangles.
As an example, consider the 2D case depicted in Fig. 2. In the two-dimensional domain
three-dimensional triangles and planes resemble edges or lines (3D bodies resemble 2D
areas). The gray body consists of five corner points and edges. Assuming a symmetrical
partition of the domain, at each of these corner points (corner points in 2D correspond to
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Figure 2: Two-dimensional example for the definition of half-angles and separation planes.

triangle edges in 3D) half-angles α can be defined in such a way that the angle between
an edge and the separation plane equals α and the angle between two body edges (tri-
angles) equals 2α. For efficiency reasons and to better apply boundary conditions to the
body’s points, it is desirable to identify the first inner layer of body points only. In Fig. 2
the image on the lower left shows this first-layer region in blue, green, and pink colors.
The detailed magnification of the blue-green corner depicts the half-angle definition. Red
dots represent the first layer of solid body grid nodes.

3 Surface mesh preparations

The proposed grid generation algorithm is based on tessellated surface mesh informa-
tion. Before the actual grid generation algorithm is triggered, several preliminaries are
required. In order to construct the separation planes that are needed later in the grid gen-
eration process, the provided triangular surface mesh is preprocessed and information on
the triangle connectivity is extracted from the given vertex information.

3.1 Topology based neighbor search for tessellated surfaces

In order to generate half-angles for the triangle edges, it is necessary to find each tri-
angle’s neighbors. For any given closed and tessellated surface without bifurcations
there exist three neighboring triangles to every triangle. In the example shown in Fig. 3
the blue triangle t1 has three light blue neighbors n(i,t1) with i = 1,2,3. The gray tri-
angles n(j,n(i,t1)) are the respective neighbors thereof, where j = 1,2,3, i = 1,2,3, and
n(3,n(i,t1))= t1. With the blue triangle being the considered triangle, the light blue ones
are first degree neighbors and the gray triangles are second degree neighbors. The out-



C. F. Janßen, N. Koliha and T. Rung / Commun. Comput. Phys., 17 (2015), pp. 1246-1270 1253

Figure 3: A triangle and its neighbors on a closed and tessellated surface.

lined surrounding triangles are neighbors of order three or higher. Fig. 3 represents all
the information a neighbor search operation should produce.

Arbitrary surfaces can be described with the widely used STL file format, containing
a list of triangle corner point locations. Repetitively, triangles are defined by stating their
vertex coordinates as three-tuples. For closed surfaces, this representation redundantly
stores vertices that are shared by multiple triangles. This not only introduces possible
gaps between triangles resulting from round off errors but also requires more memory
than actually necessary to store the well defined point positions and surface topology.
From the information stored in the STL file, a list of all occurring points and their respec-
tive triangle IDs is generated. Sorting this list in a x−y−z hierarchy allows the identifica-
tion of point clusters. E.g. a cluster of five identical points indicates five triangles sharing
this point. The point clusters are used to derive the triangle connectivity necessary for
the definition of separation planes.

Consider the unit cube with its eight cornering points shown in Fig. 4. Each face of
the cube is divided into two triangles, generating twelve triangles with a total of 36 non-

unique points. After generating the list L̃ from the STL information and L̃points by sort-
ing it in space, the eight unique points are identified from the point clusters. The newID is
counting through the unique points, the longID is the point’s original ID and the shortID
stores the cluster’s first point’s original ID, i.e. its longID. Extracting the unique points

of L̃points yields the list L. The arrays Ap, and Al are used for the neighbor determination
algorithm. They reference points in L with their newID, can access point clusters through
the shortID and derive the triangle ID from a point’s longID. The neighbor determina-
tion process is executed by identifying all triangles that share a given unique point. This
means that the determination of the neighbors of a given triangle only involves the trian-
gles that are part of the point clusters that result from the vertices of the given triangle.
A triangle is then determined as the given triangle’s neighbor if they have two points in
common. Note that the computational expense per triangle is independent of the overall
number of triangles and scales solely with the number of triangles connected to the given
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Figure 4: Essential data structure elements for the surface mesh preparation, exemplified by a unit cube. Sorting

lists (L̃ & L̃points) of vertices spatially allows the extraction of unique points (L) and identification of point
clusters, i.e. triangles that share the same point. The information is stored in arrays (Ap & Al) for faster
unordered access.
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triangle’s vertices. The process for a given triangle (parent) can be summarized as:

1. For each of the parent’s vertices, calculate the longID from the parent’s sequential
ID {0···nTriangles} and the local vertex number {0···2}.

2. Access Al at the entry determined above (longID), acquiring the shortID (sequen-
tial ID of the first point in the cluster) of the vertex.

3. Enter Al at the shortID to get the sequential ID i of the first point in the cluster.

4. Sequentially loop over all the points of the cluster and use their longID to derive
the sequential ID {0···nTriangles} of the triangle (sibling) they belong to.

5. Determine the number of points that the sibling and the parent share by compar-
ing their vertices’ respective newIDs.

6. If a sibling shares two points with the parent, set it as a neighbor of the parent.

For the sake of an example, consider iTriangle = 5 and iVertex = 2 yielding longID

= 3*5+2 = 17 and thus acquiring shortID = 8 and newID = 7 from the Al array (step 1 in
Fig. 4). The shortID = 8th element in the Al array (step 2) provides the i = 31 value of
the point cluster’s first element (step 3). Its longID is 8 resulting in jTriangle = 2 (step
4). This sibling has vertices with longID = jTriangle*3 + {0, 1, 2} = {6, 7, 8}

and newID = {4, 6, 7}. The parent triangle has vertices with longID = {15, 16, 17}

and newID = {6, 3, 7}. Parent and sibling triangle share the two unique points 6 and
7 (see identical newIDs), which makes them neighbors. Since the shared points are along
the parent’s third edge the value jTriangle = 2 is stored in the parents third neighbor
entry. This example shows the determination of just one of the three neighbors.

These mesh preparations only have to be carried out once, before the actual grid gen-
eration takes place.

3.2 Mesh refinement

Since each computational thread operates on the assigned triangle’s bounding box, the
size of the triangle is directly affecting the execution time of each thread. Smaller triangles
yield smaller bounding boxes resulting in a shorter execution time. Size in this context
was chosen to be judged by the triangle’s longest edge, since this attribute predominantly
dictates the bounding box’s dimensions. Moving bodies could rotate in such a way that
the longest edge is aligned in the least preferable 45◦ angle with respect to the grid axes.
It is therefore desirable to divide the tessellated surface into smaller, i.e. shorter longest
edge, and consequently more triangles. To this end a mesh refinement procedure has
been developed.

A triangle splitting approach has been chosen. Each triangle with an edge exceeding
a set margin is cut in two, generating two new triangles. The blue triangle in Fig. 5
has an edge exceeding the margin and is cut in two. Since hanging nodes would result
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Figure 5: Mesh refinement applied to two neighboring triangles.

in undefined neighbor assignment, the (red) triangle that is sharing the blue triangle’s
longest edge is also split.

A new node is generated in the middle of the splitting edge and appended to the list
of vertices. The blue and the red triangle are considered to have changed in size and
remain at their position in the triangle list while the two new triangles are appended to
it. Depending on the edge along which the triangles are halved, the neighbor IDs have to
be updated accordingly. All eight triangles in Fig. 5 require neighbor updates because a
single triangle was supposed to be split.

4 Details of the ePiP grid generation algorithm

After these initial preparations, the actual grid generation process is triggered. In the
following section, the details of the proposed grid generation algorithm are discussed. A
grid point is considered part of the inner body shell if

1. it is located on the inside of the triangle as defined by its unit normal vector ñ and
its perpendicular distance s to the triangle plane is less than the first layer thickness
δ, which is a function of the triangle orientation with respect to the grid, and

2. it is on the inside of all triangle separation planes to the (at most) three adjacent
triangles defined by the bisection vectors bi.

4.1 Determination of first layer thickness δ and distance check

For each triangle a specific layer thickness has to be computed so that all the points that
will be identified as inner points have at least one neighbor outside the triangle, i.e. each
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inner point really is the first point on the inside. This layer thickness is derived as follows:
Consider a cube of grid points (8 points in 3D, 4 points in 2D) and the triangle in question
arranged in such a way that one of the cube’s vertices is located on the triangle plane. The
cosine of the angle ϕ in-between the triangle normal vector n=(nxnynz)T, ‖n‖=1 and the
diagonal z=(±∆ ±∆ ±∆)T of the cube that is oriented positively in the same quadrant
as the normal is

cos ϕ=
<z,n>√

3∆
=

±∆nx±∆ny±∆nz√
3∆

. (4.1)

All sub sums of the inner product are positive since the diagonal is oriented towards the
same quadrant as the normal vector. This yields

cos ϕ=
|nx|+|ny|+|nz|√

3
. (4.2)

The layer thickness δ is the projection of the diagonal to the normal, thus:

δ=<z,n>=
√

3∆cos ϕ=∆
(
|nx|+|ny|+|nz|

)
. (4.3)

In Fig. 6, the two-dimensional case is illustrated. In analogy to the three-dimensional,
more general case, an equivalent 2D layer thickness of δ2D=∆

(
|nx|+|ny|

)
is found.

Figure 6: Determination of the layer thickness in 2D.

The perpendicular distance of a grid point to the triangle plane now is computed via
the negative inner product of a vector originating at one of the triangle’s vertices and
pointing at the grid point in question and the unit normal vector. The negative inner
product yields the norm of the projection of the point vector onto the inverted normal
and therefore the desired distance:

s = − <v4 , n>= − <v5 , n>= − <v6 , n> , (4.4)
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where v3+i with i= 1,2,3 are defined as vectors originating from Pi and pointing at the
grid point in question, P4:

v3+i=P4−Pi . (4.5)

The perpendicular distance s has to be computed for every point within a triangle’s
bounding box. Points that satisfy the condition

s ∈
[

0 : δ
)

(4.6)

are identified and further investigated for their validity.

4.2 Construction of separation planes

Consider a tessellated closed body topology where each triangle t has the vertices P1, P2,
and P3. These points are arranged in such a way that the edges v1=P2−P1, v2=P3−P2,
v3 =P1−P3 define an outward pointing normal vector ñ= v1×v2. A separation plane
is constructed for each triangle edge that is shared with an adjacent neighbor. The unit
normal vectors of the focus triangle and its considered neighbor are n and nN,i, respec-
tively, where i=1,2,3 indicates the edge along which the neighbor with unit normal nN,i

occurs. The most straightforward approach would be to construct a symmetrical separa-
tion plane Sh,i from the average of the adjacent triangles’ unit normals. Such a plane is
defined by the shared triangle edge vi and the half-vector

hi =−n−nN,i . (4.7)

This approach resembles the half-angle definition for α introduced above, see the left
panel in Fig. 7 for the 2D equivalent. Due to the varying layer thickness of the neigh-
boring triangles, this approach is not able to cover the entire inner domain. A triangular
prism at the innermost corner of the triangle domains is not tested for either of the neigh-
bors. This can be avoided by introducing the bisection plane Sb,i constructed from the
shared triangle edge vi and a vector bi that is proportional to a vector originating from the
edge and pointing towards the intersection line of the two layer thickness planes while
being perpendicular to vi. The layer thickness adjusted bisection approach is depicted in
the right panel of Fig. 7. The bisecting vector bi is defined as

bi ∝ b̃i =
δN,i

sinµ
n
⊥+

δ

sinµ
n
⊥
N,i , (4.8)

where δ and δN,i are the layer thicknesses of the focus and the neighbor triangle, respec-
tively, and n⊥=n×vi and n⊥

N,i =vi×nN,i are vectors perpendicular to the triangles’ unit
normals and their shared edge (see Fig. 8).

The computation of the sine function can be avoided by multiplying equation (4.8)
with sinµ since only the signed direction of bi is of interest for the construction of Sb,i.
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Figure 7: Definition of an unsymmetrical separation plane Sb,i (right). This allows the consideration of grid
points lying outside (green region) the triangle domains defined by the half-separation plane Sh,i (left).

Figure 8: Construction of the unsymmetrical bisection vector bi from the normal vectors and the shared triangle
edge.

For total opening angles φ of more than 180◦, i.e. concave surface regions, the bisecting
vector has to be inverted. The inner product of the edge vector vi and the vector resulting
from the normals’ cross product can be used to define the sign of bi:

bi=<n×nN,i , vi> ·
[

δN,i(n×vi)+δ(vi×nN,i)
]

. (4.9)

The bisecting vector’s norm is vanishing for n= nN,i. In such cases, one possibility is to
fall back to the half-vector hi which actually is the exact solution for this scenario. The
separation planes have to be constructed for every edge whenever the surface’s orienta-
tion relative to the grid changes. For transient CFD simulations of moving bodies this is
the case at every time step.

The grid point P3 is set as a boundary node if

<bi×v3+i , vi>≥0 ∀ i ∈ {1, 2, 3} (4.10)
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Figure 9: Point classification scheme.

holds true. Fig. 9 depicts the geometrical relations found for the focus triangle and its
neighbor: a point is considered part of the domain if it is within each of the triangle’s
separation planes. Each plane is defined by the bisection vector bi. The point is consid-
ered inside of separation plane Sb,i if the cross product’s projection of bi and v3+i onto
the edge vector vi is positive.

For the case that two neighboring triangles almost coincide, i.e. φ is very small, all the
involved vectors bi, v3+i, and vi will still be numerically identical (except for the sign in
case of vi) for the two triangles. Thus, if one of the two triangles yields a positive value
for <bi×v3+i , vi> the other triangle will get a negative result, even for very small values
of bi×v3+i.

5 GPU implementation and performance

The main aim of the proposed voxelization algorithm is to find a surface voxelization
corresponding to a tessellated mesh and a rectilinear grid of points in a highly paral-
lelized manner with very few operations necessary. The presented surface voxelization
algorithm has been implemented in C++ and CUDA for parallel execution on NVIDIA
GPUs. Both single and double precision computations are supported. The CUDA phi-
losophy is based on a combined architecture of a host and one or multiple devices. The
host part consists of a CPU and the host memory, whereas the devices are graphics cards
with their GPUs and the device memory. Intercommunication between host and device
is provided by the PCI-express (PCIe) interface. Just like regular code for single thread
processing on the host is compiled with a C compiler, the files with CUDA extensions
have to be compiled with the NVIDIA CUDA C compiler (nvcc). A typical CUDA pro-
gram provides data for processing on the GPU by copying it from host to device memory.
The GPU then executes the instructions provided by the host and stores the result data
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in device memory. The presented implementation performs the data copying only once
at the beginning of the simulation and relies entirely on the fast-access device memory
for following voxelization intervals. The ePiP algorithm is seamlessly embedded into the
efficient lattice Boltzmann solver ELBE, a CUDA-accelerated CFD solver based on an effi-
cient Lattice Boltzmann method, that operates on device memory only and hence allows
for a very efficient coupling to the grid generator.

5.1 Cost function approach

Before the actual performance measurements on recent GPGPU hardware, some theoret-
ical remarks on the expected performance of ePiP are given. Consider the per triangle
computational cost function

C(nB)= k+λnB (5.1)

being a linear function of the number of grid points nB found in that triangle’s bounding
box. The constant per triangle cost k and per grid point cost λ are parameters of the cost
function. The dimensions of the bounding box depend on the triangle’s axes projected
and normalized dimensions lx, ly, and lz measured in grid units:

nB(lx,ly,lz)=(lx+∆B)(ly+∆B)(lz+∆B) . (5.2)

The bounding box overlap ∆B is the number of additional points in each direction, in-
troduced to guarantee that a closed inner shell of points can be identified. Therefore, for
constant factors k and λ, the cost function can be expressed as a function of the triangle
dimensions:

C(lx,ly,lz)= k+λ(lx+∆B)(ly+∆B)(lz+∆B) . (5.3)

Mesh refinement causes a change in cost according to

C(lx,ly,lz)→2 C( fx lx, fy ly, fz lz) , (5.4)

where fx, fy, and fz range from 0.5 to 1 depending on the triangle’s shape and orientation.
I.e. a refinement step leads to performance gains if the cost of two triangles with smaller
dimensions is less than the cost of the single triangle with larger dimensions. Assuming
that the number of triangles exceeds the number of cores on the GPU‡, a performance
maximum is observed if

C(lx,ly,lz)=2 C( fx lx, fy ly, fz lz) . (5.5)

For an isosceles triangle with diminishing area (shape) and lx = ly = lz (orientation), i.e. a
three dimensional diagonal, the dimension factors fx, fy, and fz approach the minimum
of 0.5. In this case the performance maximum condition ((5.5) with (5.3)) reads

3

4
lx,y,z

3+6 lx,y,z
2−64− k

λ
=0, (5.6)

‡If the number of triangles is significantly less than the number of cores, i.e. after a refinement step there still
is at least one core per triangle, a mesh refinement step will always have a positive effect on performance.



1262 C. F. Janßen, N. Koliha and T. Rung / Commun. Comput. Phys., 17 (2015), pp. 1246-1270

where the bounding box overlap has been set to ∆B=4. The optimal projected normalized

length is l
optimal
x,y,z ≈ 3.3 for k

λ = 30. This value for k
λ has been estimated by comparing the

number of algorithmic operations involved per triangle and per grid point. Thus, the
optimal normalized triangle edge size is

L
optimal
diagonal=

√
3·loptimal

x,y,z ≈ 6. (5.7)

For other triangle shapes and orientations the dimension factors fx, fy, and fz are more
than 0.5 and, therefore, the optimal triangle edge size is also more than it is for the most
beneficial case of a three dimensional diagonal:

Loptimal≥6. (5.8)

5.2 Performance measurements

Following these theoretical remarks, performance measurements are carried out. To give
performance predictions for the grid mapping process of arbitrarily shaped, complex
triangular surface meshes, the following predictor function T is used:

T(n∆,nbb,nactive)=n∆T∆+nbbTbb+nactiveTactive+
nactive

n∆

T0 . (5.9)

The total computational costs for the grid mapping of one specific triangular surface
mesh is assumed to be a function of the total number of triangles n∆, the number of grid
nodes in the triangles’ bounding boxes, nbb, and the number of active nodes, nactive, that
have been finally marked as solid body grid nodes. For the calibration, several param-
eter studies for a simple spherical geometry (Fig. 10) were conducted, on consecutively
refined grids. The performance of the grid generator was analyzed in terms of MNAPS
(million node activations per second),

PePiP=
nactive

T
. (5.10)

The grid mapping was repeated 100 times in a row, to get a reliable estimate for the com-
putational time T. All the computations were done on an NVIDIA GTX Titan GPGPU
board, that was connected to a multi-core host machine via an external PCI-Express ex-
pansion chassis. Single precision arithmetics and CUDA 5.5 [22] were used.

In Fig. 11, the resulting performance is plotted, against the number of active nodes per
triangle. As expected, and predicted by the cost function model in the previous section,
the performance maximum is achieved for Loptimal ≥ 6, corresponding to a number of
active nodes per triangle of approximately 36. Secondly, an increasing performance with
increasing total number of triangles can be observed. Apart from parallelization issues,
this reflects the fact that, with increasing number of triangles, the overhead of inactive
nodes in the triangle bounding boxes decreases (which is accounted for by the T0-term in
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Figure 10: Illustration of the spherical test geometry that was used for the calibration of the ePip performance
prediction model. Exemplarily, four selected refinement levels with 160, 720, 3040, and 12480 nodes are
displayed.

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1  10  100  1000  10000

P
er

fo
rm

an
ce

 (
M

N
A

P
S

)

Active nodes per Triangle

Slo
pe =

 1

720
3040

12480
50560

203520
816640

Figure 11: 3D ePiP sphere test case — predicted (-) and measured (x) performance plotted against the number
of active nodes per triangle for six different configurations from 720 to 816,640 triangles.

(5.9)). The test case with the highest number of triangles (n∆ =816,640) has been used to
calibrate the unknown factors Ti in the performance prediction model as follows:

T∆ =5.85E-9s, Tactive =1.38E-9s, Tbb =5.64E-11s, T0=1.6E-6s. (5.11)

The resulting model then has been used to predict the runtimes of the remaining test
cases (with 720 to 203,520 triangles), and a very good agreement was found, see Fig. 11
(symbols vs. straight lines). For all the test cases, the performance of the grid generation
tool was between 10 and 100 million node activations per second.

Fig. 12 shows the inverse relation, i.e. the computational time for the grid mapping
over the number of triangles per activated node. Even in the worst case of low numbers
of triangles per active node, the total computational costs of the grid generation is below
0.1 seconds.
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Figure 12: 3D ePiP sphere test case — predicted (-) and measured (x) computational time for the grid update,
plotted against the number of triangles per active nodes for six different configurations from 720 to 816,640
triangles.

Figure 13: Illustration of the Stanford Bunny test geometry [23,24].

5.3 Performance prediction for the Stanford bunny

The performance prediction model can be used to estimate the computational time for the
grid generation process in a real-world problem with a more complex configuration. As
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Figure 14: Comparison of predicted (-) and measured (x) performance for the Stanford Bunny test case.

benchmark geometry, the well-established Stanford Bunny is examined [23]. The Stan-
ford Bunny has been used extensively in various research projects to test geometric algo-
rithms. The digital bunny model was created by a range scan technique [24]. While the
original bunny model has 69,451 triangles only, we use an enriched version with 270,000
triangles. The test geometry has a bounding box of 50 times 38.7 times 49.5 length units
(LU) cubed and a surface area of 5842 LU squared. The bunny geometry is mapped to
a Cartesian, equidistant grid with (at most) 10 lattice nodes per unit length, yielding a
computational grid of 95.8 million nodes, and a discrete bunny surface of approximately
584,200 lattice nodes, corresponding to nactive

n∆
≈2.163. With the help of Fig. 11, Eq. (5.9) and

the calibration factors in Eq. (5.11), a performance maximum of 100 MNAPS is predicted.
In Fig. 14, the performance prediction and the actual measured performance are com-
pared for different grid sizes. Indeed, the resulting performance maximum is found to be
approximately 80 MNAPS, so that the prediction is rather accurate and the extrapolation
of calibration data from convex and ideal spherical geometries to a lot more complex,
concave geometries is valid.

5.4 Coupling to CFD solvers

In CFD applications, not only the absolute grid generation time is of interest, but the ra-
tio of computational time for the actual CFD computations and the geometry updates.
For the above-mentioned bunny grid, the computational costs for one Lattice-Boltzmann
time step can easily be estimated and/or found in literature. In our experience, the maxi-
mum performance of three-dimensional GPGPU-accelerated LBM solvers is in the order
of 250 MNUPS (million grid node updates per second) for complex multiphysics simu-
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lations, e.g. free surface flow simulations [25], and up to 500 MNUPS for singlephase
flow problems [26] including complex geometries, boundary conditions and grid up-
dates. Our performance estimate is based on our experiences with the ELBE code, for
complex singlephase flows. However, for academic benchmark problems (e.g. lid-driven
cavity, simple boundary conditions, domain sizes a power of two) with simple collision
operators, several publications report a performance of up to 1.4 GNUPS on a GTX Titan
board. This can be reproduced by the ELBE code for very academic settings. The perfor-
mance decreases as soon as more complex collision operators, such as an MRT-LES, and
more complex boundary conditions, such as LIBB or anti-bounce-back pressure bound-
aries, are used. Moreover, we found that, as soon as the grid sizes are not a power of
two, performance decreases remarkably (e.g. comparing a 256 cubed grid with a 300
cubed grid). If we then further consider fluid-structure interaction problems, where the
presented grid generator comes into play and a dynamic update of the Eulerian grid is
necessary, additional force calculation, local boundary conditions and a refill algorithm
for the grid nodes that change from solid to fluid are mandatory in the flow field update.
Nevertheless, even for a 1,400 MNUPS fluid solver, the performance of ePiP still is more
than sufficient: the theoretical performance of the coupled solver, including the LBM flow
field update and the subsequent ePiP grid update, yields

Ptotal =
ntotal

ntotal
1,400 MNUPS +

nactive
80 MNAPS

=
95.8E6

95.8E6
1,400 MNUPS +

5.8E5
80 MNAPS

≈1,265 MNUPS. (5.12)

Hence, the overhead of the grid update step decelerates the numerical simulation
by only 9.6%. Re-calculating the overhead based on the above-mentioned more realistic
ELBE performance values even reduces the overhead to 3.6%, which is deemed to be
negligible.

5.5 Applications

After the successful validations, coupled algorithm can be applied to state-of-the-art
problems in computational fluid dynamics, including the numerical simulation of fluid-
structure interactions and flows in complex geometries. Application examples include
thermal cabin flows (Fig. 15), multiphase flows (Fig. 16) and aircraft ditching simulations
(Fig. 17). Further application examples with moving geometries and more complex fluid-
structure interactions are currently under development and will be published in the near
future.

6 Conclusions and outlook

In this paper, a novel, fast and efficient parallel surface voxelization technique was pre-
sented. The necessary preprocessing steps, key concepts of the parallel implementation
and performance results were addressed. The computational surplus of the presented
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Figure 15: Snapshot of a three-dimensional elbe singlephase flow simulation: developing flow field (velocity
magnitude) in an A380 cabin mock-up [27].

Figure 16: Snapshot of a three-dimensional elbe multiphase flow simulation: phase interface location in a
complex 3D stirring unit (left: surface mesh representation of the unit, right: corresponding surface voxelization).

Figure 17: Snapshot of a three-dimensional elbe freesurface flow simulation: ditching of an aircraft fuselage.
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grid generation procedure was shown to be negligible in comparison with the perfor-
mance of the flow field calculations. The coupled algorithm allows for very efficient
fluid-structure interaction simulations, without noticeable performance loss due to the
dynamic grid update. More specifically, the (theoretical) performance loss is found to be
less than 10%, even for highly-accelerated GPU-LBM solvers.

Due to these very promising numerical results and the very competitive performance,
the present methodology will be further examined and improved in future work. To en-
hance the numerical accuracy of the boundary representation, second-order boundary
conditions will be addressed. Representing an arbitrary surface with a voxelized Carte-
sian grid introduces discretization errors that scale with the grid spacing and results in
numerical simulations with first order accuracy. Second-order accuracy can be obtained
by improved boundary conditions based on an additional consideration of the surface
distances for the identified body nodes and their respective lattice directions. In the con-
text of LBM, these distances are often referred to as subgrid distances [28]. By design, the
extension of the presented methodology to calculate such distances is straightforward.

The left panel of Fig. 18 depicts a circle that is discretized with 360 line elements.
In the right panel, the red nodes indicate the nodes inside the axis-aligned bounding
box of the red line element, that are tested with the ePiP algorithm. The thin radials
mark the unique element domains. The bright green node is identified as a solid body
node by the thread that has been assigned to the red line element. The eight discrete
lattice directions (thick, light gray) are intersected with the line segment’s extended line
(thin, red) to compute the node distance (thick, turquoise). A reliable implementation
for the computation of the lattice distances in 3D is considerably more computationally
expensive and an efficient technique for their determination has to be found in order to
realize higher order boundary conditions for smoother body representation on Cartesian
grids for the lattice Boltzmann method.

Figure 18: (Left) A circle (red), which is discretized with 360 line elements, is mapped to the Cartesian grid.
Cubes colored in shades of gray indicate their proximity to the circle’s surface (black = internal or close by;
white = distant). (Right) A detailed depiction of a line segment (red line) with its bounding box (red dots),
and the computed lattice distances (turquoise).
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