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Abstract. This paper presents a numerical and experimental study on hydrodynamic
behavior of thin liquid films in rectangular domains. Three-dimensional computer
simulations were performed using the lattice Boltzmann equation method (LBM). The
liquid films laying on solid and liquid substrates are considered. The rupture of liq-
uid films in computations is initiated via the thermocapillary (Marangoni) effect by
applying an initial spatially localized temperature perturbation. The rupture scenario
is found to depend on the shape of the temperature distribution and on the wettability
of the solid substrate. For a wettable solid substrate, complete rupture does not occur:
a residual thin liquid film remains at the substrate in the region of pseudo-rupture. For
a non-wettable solid substrate, a sharp-peaked axisymmetric temperature distribution
induces the rupture at the center of symmetry where the temperature is maximal. Ax-
isymmetric temperature distribution with a flat-peaked temperature profile initiates
rupture of the liquid film along a circle at some distance from the center of symmetry.
The outer boundary of the rupture expands, while the inner liquid disk transforms
into a toroidal figure and ultimately into an oscillating droplet.

We also apply the LBM to simulations of an evolution of one or two holes in liquid
films for two-layer systems of immiscible fluids in a rectangular cell. The computed
patterns are successfully compared against the results of experimental visualizations.
Both the experiments and the simulations demonstrate that the initially circular holes
evolved in the rectangular cell undergoing drastic changes of their shape under the
effects of the surface tension and gravity. In the case of two interacting holes, the
disruption of the liquid bridge separating two holes is experimentally observed and
numerically simulated.
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1 Introduction

The mechanism for rupture of thin liquid films is of importance for colloid science, foam
mechanics, ecological problems and many engineering applications. The films can be
freely hanging as well as laying on solid or liquid substrates. The theory of the critical
thickness of rupture of free thin liquid films was proposed by Scheludko et al. in [1–
3]. There exists extensive literature on rupture of thin liquid films on solid substrates
including structured surfaces (see review [4]). The systems consisting of thin liquid films
on liquid substrates are widely present in nature and technology (see review [5]). One of
the first experiments on the hydrodynamic behavior of thin films on liquid substrate after
rupture was carried out in work [6], where the authors used a round cell and considered
an axisymmetric problem of expansion and further evolution of a hole in the film.

Our earlier work [7] was devoted to three-dimensional computer LBM simulations
of the dynamics of thin freely hanging liquid films with no gravity under the action of
a radially symmetric temperature distribution with a maximum at the center. This tem-
perature distribution can initiate a rupture of the film due to the thermocapillary effect.
Depending on the shape of the temperature distribution in the vicinity of the symmetry
axis (maximum of temperature), the film ruptured either with the formation of a central
round hole or an annular hole. In the latter case, a liquid disk was formed that later
evolved into a droplet in the center of the round hole.

The present study is focused on the hydrodynamic aspects of the rupture of thin liq-
uid films on liquid and solid substrates in a rectangular cell. The evolution of one or two
holes in liquid films on a liquid substrate is investigated in experiments and is simulated
for two-layer systems of immiscible fluids.

The three-dimensional computer simulations are performed using the lattice Boltz-
mann equation method. The phase transitions in the LBM are simulated by introducing
attractive forces acting on the matter at the nodes of the computation grid. The pseudopo-
tential method proposed in [8, 9] describes the fluids with an arbitrary equation of state
(pressure as a function of density and temperature) and simulates the interfaces between
vapor and liquid phases with a surface tension. Here we use the pseudopotential model
considerably improved in works [10–12]. For liquid films and liquid substrates we use
the model van der Waals equation of state for which the surface tension decreases with
temperature and tends to zero near the critical point. The effect of solid walls on fluids is
simulated by special forces acting between the nodes representing the solid boundaries
and the nodes belonging to the liquid or vapor phases.

2 Lattice Boltzmann Equation method

Simulations of hydrodynamic flows with the interfaces between liquids and gases are
of vivid interest in scientific and industrial applications. We use the lattice Boltzmann
equation method in computer simulations because it does not require tracking of the
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interfaces that appear, disappear and undergo topological changes.
Actually, the algorithm of one-component two-phase lattice Boltzmann method in-

cludes the following steps:

• Choice of regular spatial lattice and corresponding pseudo-particle velocity set;

• Transfer of distribution functions (pseudo-particles) along the characteristics;

• Implementation of a collision operator;

• Implementation of the body forces;

• Use of specific equations of state for fluids;

• Fulfillment of the criterion for stability;

• Implementation of boundary conditions.

This method describes the fluid flows as a motion of pseudo-particles having a certain
distribution over a discrete set of velocities ck. The lattice Boltzmann method describes
fluids with an arbitrary prescribed equation of state and simulates the vapor-liquid in-
terfaces with a surface tension. In LBM, the different phases of a substance (liquid and
vapor) are usually simulated as one fluid. For this purpose, special forces acting on a
fluid in nodes of the computation grid are introduced. The global momentum conserva-
tion law requires that these forces should be a gradient of a certain pseudopotential. This
idea of the pseudopotential was firstly proposed in work [8] for equations of state given
in the form P(ρ) and then extended in [9] to the case with P(ρ,T), where P, ρ and T are
the pressure, density and temperature, respectively. Later, this model was considerably
improved in works [10–12].

In the lattice Boltzmann method, the single-particle distribution functions Nk(x,t) are
used as variables in accordance with the chosen finite set of velocity vectors ck, k=0, ··· ,b.
The evolution equation for the distribution functions Nk can be written in the form

Nk(x+ck∆t,t+∆t)=Nk(x,t)+Ωk(N)+∆Nk , (2.1)

where ∆t is the time step, Ωk is the collision operator, and ∆Nk is the change of the distri-
bution functions due to the action of the internal and external body forces.

The hydrodynamic variables (the density ρ and the velocity u of fluid) in a node are
calculated as

ρ=∑
b

k=0
Nk, (2.2)

ρu=∑
b

k=1
ckNk. (2.3)

The vectors ck of pseudo-particle velocity depend on the chosen lattice. For three-
dimensional simulations, the three-dimensional version of lattice Boltzmann method
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D3Q19 with nineteen vectors ck of pseudo-particle velocity on cubic lattice [13] is real-
ized. Hence, we have for velocity vectors |c0|= 0, |c1−6|= h/∆t, and |c7−18|=

√
2h/∆t.

Here, h is the lattice spacing.
The collision operator is usually used in Bhatnagar–Gross–Krook (BGK) form [14]

Ωk=(N
eq
k (ρ,u)−Nk(x,t))/τ, (2.4)

where τ is the dimensionless relaxation time. Nevertheless, the multi-relaxation time
(MRT) collision operator also can be used. For BGK model, the kinematic viscos-
ity depends on the relaxation time in accordance with the well-known expression ν =
θ(τ−1/2)∆t. Here θ is the “kinetic temperature” of LBM pseudo-particles. For the lattice
Boltzmann models D1Q3, D2Q9 and D3Q19 the value θ=(h/∆t)2/3 is usually used.

The Exact Difference Method (EDM) [15–17] is used for the implementation of the
body forces (internal forces and gravity) in the LBM:

∆Nk(x,t)=N
eq
k (ρ,u+∆u)−N

eq
k (ρ,u), (2.5)

where the value of the velocity after the action of the total force F on a node is equal to
u+∆u=u+F∆t/ρ.

The corresponding equilibrium distribution functions [18] are calculated as

N
eq
k (ρ,u)=ρwk

(

1+
cku

θ
+
(cku)2

2θ2
−u2

2θ

)

. (2.6)

For fluids, the van der Waals equation of state is used. In terms of reduced variables
P̃=P/Pcr, ρ̃=ρ/ρcr and T̃=T/Tcr, the equation has the form

P̃=
8ρ̃T̃

3− ρ̃
−3ρ̃2. (2.7)

Here Pcr, ρcr, and Tcr are the values of pressure, density and temperature at the critical
point.

For equations of state in the form P(ρ), the total force F acting on a node can be
calculated as a gradient of pseudopotential F=−∇U [8]. If the equation of state has the
form P(ρ,T), the pseudopotential U can be used in the slightly modified form U(ρ,T)=
P(ρ,T)−ρθ [9].

In [10–12], a new special function Φ(ρ,T)=
√
−U has been proposed. Hence, the total

force can be written in the new equivalent form

F=2A∇(Φ2)+2(1−2A)Φ∇Φ. (2.8)

Here A is the free parameter [10, 11]. The appropriate isotropic finite difference approxi-
mation of this equation was proposed in [10–12]:

F(x)=
1

αh

[

A
b

∑
k=1

GkΦ2(x+ek)ek+(1−2A)Φ(x)
b

∑
k=1

GkΦ(x+ek)ek

]

. (2.9)
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For the three-dimensional model D3Q19, the coefficient α is equal to 3, and the coeffi-
cients Gk>0, with G1−6=1 and G7−18=1/2 for basic and diagonal directions of the cubic
lattice, respectively.

For the van der Waals equation of state, the free parameter A is approximately equal
to −0.152 [10, 11] to ensure the relevant values of vapor density on the coexistence (bin-
odal) curve.

To simulate the immiscible fluids, two sets of the LBM distribution functions Ns
k and

Nσ
k are used. The evolution equations for distribution functions of each component s and

σ have the form

Ns,σ
k (x+ck∆t,t+∆t)=Ns,σ

k (x,t)+Ω
s,σ
k +∆Ns,σ

k . (2.10)

To ensure immiscibility of the two fluids, the special forces of interaction between
components are introduced. These repulsive forces act on the substance of each compo-
nent in a node i from the substance of the other component that is present in neighbor
nodes k. The total forces acting on the substance of components at a node due to these
repulsion forces have the form

Fs(x)=ψ[ρs(x)]
b

∑
k=1

Bkψ[ρσ(x+ek)]ek, (2.11a)

Fσ(x)=ψ[ρσ(x)]
b

∑
k=1

Bkψ[ρs(x+ek)]ek. (2.11b)

Here, ψ(ρ) is the increasing positive function that depends on the density of the cor-
responding component. Obviously, the value ψ(0) should be equal to zero. In the present
work, we use the model with a linear law of interaction ψ(ρ)=ρ as the reasonable approx-
imation that is widely used in LBM simulations to ensure an immiscibility of liquids [19].
All coefficients Bk are proportional to one parameter B<0, that describes the intensity of
interaction between components.

At the walls and at the bottom of the cell the impermeability boundary conditions
are prescribed. We use the quite simple well-known “bounce-back” rule to implement
in the LBM no-slip boundary conditions at the solid bottom of the cell. In the case of
a nonwettable substrate, it practically does not slow down the flow. At the solid walls
of the cell, we use the well-known entirely slip-flow boundary conditions to reduce the
influence of boundary layers. Note that the “bounce back” boundary conditions in LBM
do not ensure the fully no-slip boundary conditions if the BGK collision operator is used.

The degree of wettability of the walls and of the bottom of the cell by both fluids s
and σ are simulated by the special forces Fbc acting between the nodes representing the
solid boundaries and the nodes belonging to the liquid or vapor phases

Fs
bc(x)=ψ[ρs(x)]

b

∑
k=1

Ckψ[ρsolid(x+ek)]ek, (2.12a)
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Fσ
bc(x)=ψ[ρσ(x)]

b

∑
k=1

Ckψ[ρsolid(x+ek)]ek. (2.12b)

Here, ρsolid is the parameter that allows one to control the value of wettability of the solid
surfaces (ρsolid 6=0 only for nodes belonging to the solid boundaries). On the contrary, the
densities of fluid components s and σ are equal to zero for all nodes belonging to the solid
boundaries. All coefficients Ck are proportional to one parameter of interaction between
the liquid and solid surfaces C<0. In this case, the product Cψ(ρsolid) is only important
because it describes the wettability of the solid walls [19].

In several simulations (Section 3), we also used the periodic boundary conditions
along the x and y directions.

For LBM with an equation of state known in the form P(ρ,T), the criterion for a nu-
merical stability has been derived in [17]

(

∂P̃

∂ρ̃

)

T

≤ (1+ θ̃)

(

h

∆t

)2

. (2.13)

Here, θ̃ = c2
s = 1/3 is the dimensionless “kinetic temperature” of LBM pseudoparticles

and cs is the lattice sound speed in classical LBM. Hence, the time step ∆t and the lattice
spacing h should agree with the criterion (2.13). The speed of sound (∂P/∂ρ)T in liquid
phase should be calculated from the equation of state.

In spite of the constant value of the dimensionless “kinetic temperature” of LBM pseu-
doparticles θ̃ =1/3 in “isothermal” model of LBM, the temperature T̃ in the equation of
state determines the value of the surface tension. In the present paper, we only used the
property of a surface tension to change its value in accordance with a prescribed temper-
ature distribution T(x,t).

The reduced values of the surface tension σ̃ = σ/(Pcrh) (Fig. 1) were calculated in
accordance with Laplace’s law for two-dimensional case P̃L− P̃V = σ̃/R̃ [20] for round
liquid droplets in a saturated vapor. Here P̃L is the reduced pressure in the liquid
droplet, P̃V is the reduced pressure in saturated vapor, and R̃ is the reduced droplet ra-
dius. For the given equation of state, the values of σ̃ obtained in two-dimensional and
three-dimensional simulations are the same. The surface tension in the lattice Boltzmann
method depends also on the dimensionless parameter

k=
Pcr

ρcr

(

∆t

h

)2

. (2.14)

We used and tested our version of LBM for many years [7, 10–12, 15–17, 20]. We have
shown that our model describes the coexistence curve (binodal) for several equations of
state extremely well [10] (much better than many other variants of LBM), including the
real (International) equation of state for water [20]. Also, it has been shown that our
model describes the liquid droplet shape oscillations in good agreement with theoretical
estimations [20].
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Figure 1: Reduced surface tension vs. temperature for the van der Waals equation of state. The dimensionless
parameter k=0.01.

For all computer simulations the Graphics Processing Units (GPUs) are exploited. We
use the GPU with “Fermi” architecture GTX-580 (512 cores, 3 GB device memory) and
also with “Kepler” architecture GTX-Titan-Black (2880 cores, 6 GB device memory). For
parallel programming we use the CUDA (Compute Unified Device Architecture) tech-
nology.

3 Thin liquid films on a solid substrate

It is well known that hydrodynamic flows can arise in liquids due to the dependence
of surface tension on temperature. This phenomenon is known as the thermocapillary
(Marangoni) effect. The three-dimensional computer simulations of thermocapillary rup-
ture in the thin liquid films on both nonwettable and wettable solid substrates are carried
out. The reason for these temperature distributions can be of different nature and is not
considered in the paper. Periodic boundary conditions are used along the x and y direc-
tions.

3.1 Rupture of thin liquid films at the center of a hot spot

For the prescribed axisymmetric temperature distribution along the film surface of the
form (Fig. 2a)

T=

{

T0+∆T(1+cos(πr/R)), for r<R,

T0 for r≥R,
(3.1)

a diverging flow in the film in the vicinity of the hot spot is generated because of the gra-
dients of the surface tension along the film. Here r=

√

x2+y2 and R is the radius of spot
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Figure 2: The temperature distribution (a) along the x axis at y= 0. The rupture of the liquid film on the
nonwettable flat surface. (b) and (c) are the density distributions in the central vertical section. T̃ = 0.8,
∆T̃=0.01. t=2000 (b,d); 3200 (c,e). Lattice is 256×256×192. R=128h.

Figure 3: The stretching (pseudo-rupture) of the thin liquid film on the wettable substrate. (a) and (b) are the
density distributions in the central vertical section. t=3000 (a); 5000 (b,c). Lattice is 256×256×192.

where the temperature is enhanced. Later, the rupture of the film occurs in the center of
symmetry where the temperature is maximal (Fig. 2). Hereinafter, in the presentation of
the computational results, we use the lattice time step ∆t as the time unit. For nonwet-
table surface, the rupture of the liquid film is complete with the formation of a hole (dry
spot).

In the case of the wettable surface, the complete breakdown of the liquid film is not
observed because the solid surface remains wetted by the extremely thin layer of liquid
(wetted spot, precursor) (Fig. 3).

3.2 Rupture of thin liquid films under the action of temperature distribution
with a flattened vertex

For the prescribed axisymmetric temperature distribution with a flattened vertex
(Fig. 4a):

T=

{

T0+∆T(1+cos(π(r/R)2)), for r<R,

T0, for r≥R,
(3.2)
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Figure 4: The temperature distribution (a) along the x axis at y= 0. The rupture of the liquid film on the
nonwettable substrate. T̃ = 0.8, ∆T̃ = 0.01. t= 2400 (b); 2600 (c); 2800 (d); 3000 (e); 3200 (f); 3600 (g).
Lattice is 256×256×192. R=128h.

Figure 5: The stretching (pseudo-rupture) of the thin liquid film on the wettable substrate. t=3200 (a); 4000
(b). Lattice is 256×256×192.

the rupture of the liquid film on the nonwettable substrate occurs not in the center of sym-
metry but along some circle where the gradient of the temperature is more pronounced.
As a result, a central liquid disk is formed (Fig. 4b). The disk transforms initially into
the toroidal figure due to surface tension (Fig. 4c) and then into an oscillating droplet
(Fig. 4d,e). Later, the gradual evaporation of the droplet takes place (Fig. 4f,g). These
similar processes have been observed earlier for freely hanging films [7].

For a wettable surface of the solid substrate, full rupture does not occur. The residual
thin liquid film (precursor) covers the region of pseudo-rupture. On the wettable sub-
strate, a certain thinning of the film is formed initially in an annular region located at a
certain distance from the symmetry axis, but the central “droplet” is not formed com-
pletely (Fig. 5). Note that the oscillations similar to droplet oscillations on nonwettable
substrates are impossible in the case shown in Fig. 5 because of the surface tension along
the wettable substrate and high shear.

4 Thin liquid films on a layer of immiscible liquid

The systems consisting of thin liquid films on liquid substrates are widely present in
nature and technology. One of the first experiments on the rupture of thin films on liquid
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substrates was carried out in [6], where the authors used a round cell and considered
only the axisymmetric expansion and further evolution of the hole. Our experiments
and computer simulations are devoted to the hydrodynamic aspects of a rupture of thin
liquid films on liquid substrates in a rectangular cell. In this case, the hydrodynamic
flows are very complicated, not trivial and have not been well studied yet.

4.1 Experiments

The experiments with a two-layer system of immiscible liquids were carried out both for
the evolution of a single hole and for the interaction of two holes (Fig. 6). The dynamics
of the rupture of thin liquid films were studied in a horizontal rectangular cell with wet-
table walls and bottom. A lower layer of heavy liquid (perfluoro-n-octane C8F18) with a
density of 1.76 g/cm3 was located at the bottom of the cell (thickness 20 mm). The layer
of heavy liquid played the role of a liquid substrate. A thin film of colored water (density
of 1 g/cm3) was slowly poured onto this liquid substrate between the left wall and the

Figure 6: Experimental setup.
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Figure 7: The rupture of the thin liquid film on the surface of heavier liquid substrate. Aspect ratio AR=1.29.
t=0.24 s (a), 0.55 s (b), 0.80 s (c), 1.46 s (d), 1.94 s (e), 3.62 s (f). The dimensionless time texp=0.76 (a),
1.74 (b), 2.52 (c), 4.6 (d), 6.1 (e), 11.4 (f).

partition. Then the partition could be moved toward the right to produce the thin film of
water. Thus, the aspect ratio of liquid film and its thickness could be varied.

The rupture of the pre-tensioned water film in the central region was initiated by one
or two non-wettable thin needles. In the case of two needles, the onsets of rupture at
each needle were simultaneous with good accuracy. The evolution of the liquid film with
holes was video-recorded using the high speed camera MotionXtra-HG-100K. The frame
rate was varied from 100 to 150 frames per second.

The holes are observed to expand due to the action of surface tension and interac-
tion with the wettable walls. The shape of the holes changes drastically (Figs. 7 and 8).
The time elapsed after the onset of rupture is indicated in captions to these figures. The
dimensionless time texp = t/t0 is introduced for experimental data using the time scale

t0=
√

ρL2d/σ as was done in [21].

The main parameter for the problem is the Bond number Bo=ρgd2/σ. It represents a
dimensionless parameter used to characterize the ratio of gravity force to surface tension
force. The Bond number is equal to 0.3 for the experiment shown in Fig. 7. Here ρ is the
density of water film, d=1.5 mm is the initial thickness of the film, σ is the surface tension
of water, and g is the acceleration of gravity.

The second parameter
√

La=
√

Lρσ/µ is the Reynolds number Re=ρVL/µ divided

by the square root of the Weber number
√

We =
√

ρV2L/σ. The parameter
√

Lρσ/µ
compares the capillary and viscous forces and is usually used for liquid droplets and
films. Here L= 70 mm is the width of the cell and µ is the dynamic viscosity of water.
The parameter

√
La was of order of 2·103 in the experiments.
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Figure 8: Merging of two holes in a thin liquid film on the surface of heavier liquid substrate. t= 0.32 s (a),
1.72 s (b), 2.32 s (c), 3.38 s (d), 11.43 s (e). The dimensionless time texp=1.21 (a), 6.49 (b), 8.75 (c), 12.8
(d), 43.1 (e).

The expansion and further evolution of the hole in the film are not axisymmetric in
contrast with the experiments that were carried out in a round cell [6].

In the case of the interaction of two holes, the disruption of the liquid bridge separat-
ing the two holes is observed. At the final stage, the shape of the resulting hole tends to
the stationary oval form (Fig. 8). The initial thickness of the film for this experiment is
d=1 mm and the width of the cell is L=70 mm. Hence, the Bond number is equal to 0.13.
The time scale is t0=0.265 s.

4.2 Numerical simulations of liquid films on a solid nonwettable substrate

Three-dimensional computer simulations of the rupture of liquid films on the surface of
liquid substrate in a rectangular cell were carried out. The gravity plays an important role
in this process. As a first reasonable approximation of the two-layer problem, the single
film on a nonwettable bottom with wettable walls under gravity can be considered as a
model system. A more complicated problem is the behavior of a system of two liquid
layers.

At the first stage of simulations, the surface of a flat film of constant thickness evolves
to the self-consistent form with menisci at the walls and corners (9000 time steps). For
the sake of simplicity, the rupture of the liquid film is initiated by a prescribed short tem-
perature pulse applied to a small localized area. In the vicinity of the hot spot, diverging
flow is generated due to the Marangoni effect which triggers the rupture of the film. The
rupture being initiated, the temperature is immediately set to the initial uniform value to
avoid any effect of the temperature on the subsequent evolution of the flow.
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Figure 9: Convergence test for the rupture of a thin liquid film in the square cell with wettable walls and
nonwettable bottom. t=3600 [9000] (a), 6400 [8400] (b), 10400 (c) time steps. Lattice is 192×192×112 (a),
368×368×112 (b), 480×480×112 (c).

The results of three-dimensional simulations for a single hole in the film are shown
in Figs. 9 and 10. Perfect symmetry can be obtained in square cell (Fig. 9), if the center of
the hole is placed exactly in the center of the cell.

The Bond number in reduced variables Bo= ρ̃g̃d̃2/kσ̃ is kept constant in the simu-
lations shown in Fig. 9. The Bond number is approximately equal to 0.8. Here d̃ = 16
is the initial thickness of the film. The reduced density of liquid film ρ̃ is equal to 1.93.
The dimensionless value of surface tension is equal to σ̃ =1.8 for T̃ = 0.8 (Fig. 1). The
reduced acceleration of gravity g̃=g∆t2/h is chosen equal to 0.00003. The dimensionless
parameter k= 0.01 is introduced specifically to apply the reduced variables in LBM [20]
(Section 3).

The
√

La number in reduced variables has the form

√
La=

3

τ−0.5

√

L̃kσ̃

ρ̃
(4.1)

and is kept constant in these simulations by varying the relaxation time τ (0.528, 0.54 and
0.546) for different values of the dimensionless width of the cell L̃= L/h (192, 368 and
480).

Reasonable convergence is demonstrated for the simulations with coarse (Fig. 9a),
intermediate (Fig. 9b) and fine (Fig. 9c) grid spacing (192×192×112, 368×368×112 and
480×480×112, respectively). For the fine grid, the advance in time is slow since the time
step in LBM ∆t is proportional to the grid spacing h. Hence, the 3600 time units for the
coarse grid (Fig. 9a) and 6400 time units for the intermediate grid (Fig. 9b) correspond to
the 9000 and 8400 time units for the fine grid, respectively. Because of the finite size of the
meniscus (of order 10 nodes) compared with the size of the domain, the results obtained
with the coarse grid are not good. However the results with the intermediate and fine
grids show very similar patterns at similar moments of time.

The simulations are carried out also for a rectangular cell with aspect ratio AR=1.26
(Fig. 10). The initial thickness of the film is equal to d̃= 16. The reduced density of the
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Figure 10: Patterns of the rupture of the thin liquid film in rectangular cell with wettable walls and nonwettable
bottom. Aspect ratio AR= 1.26. tsim = 0.09 (a), 0.41 (b), 0.6 (c), 1.1 (d), 1.3 (e), 2.7 (f). Lattice is
464×368×128.

liquid film ρ̃ is equal to 1.93. The dimensionless value of surface tension is equal to σ̃=1.8.
The reduced acceleration of gravity g̃ is chosen equal to 0.000015. The dimensionless
parameter k=0.01. The Bond number is approximately equal to 0.4 which is close to the
one for the experiment shown in Fig. 7.

A qualitative agreement of the simulations (Fig. 10) with the results of the hydrody-
namic experiments (Fig. 7) is observed. The time scale in reduced variables has the form

t̃0=
√

ρ̃L̃2d̃/(kσ̃). Hence, we have dimensionless time tsim= t/t̃0 for simulations. The ra-

tio of dimensionless time of frames in simulations tsim (Fig. 10) to dimensionless time of
experimental frames texp (Fig. 7) is shown in Fig. 11. The coefficient (slope of the straight
line) is approximately equal to 0.23.

The
√

La number was on the order of 100 in the simulations which is considerably
less than the experimental one. Unfortunately, we can not considerably enlarge this pa-
rameter in LBM simulations to ensure high values of this parameter to correspond to
experimental values. For this purpose, one should either reduce the value of viscosity
(by varying the relaxation time) or enlarge the domain grid. The first way is limited by
the numerical stability of LBM, and the second way is limited by the amount of global
memory in GPUs. As a result, the values of tsim for selected frames of typical shapes
shown in Fig. 10 have the some uncertainties in time of about 20-30 % on Fig. 11. How-
ever, keeping in mind the mentioned difference in time-scales, the evolution of the film
in simulations is similar to the experimentally observed one because the main parameter
for such kind of film flows is the Bond number.

In the case of two holes in the film (Fig. 8), the film behavior (the breakdown of the
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Figure 11: Dimensionless time of frames in simulations tsim vs. dimensionless time of experimental frames
texp.

Figure 12: Merging of two holes in the film. tsim= 0.28 (a), 0.39 (b), 0.75 (c), 1.4 (d), 2.2 (e), 2.9 (f), 3.0
(g), 7.2 (h). Lattice is 640×192×80.

liquid bridge separating holes) is reproduced qualitatively (Fig. 12). The initial thickness
of the film is equal to d̃ = 12. The reduced acceleration of gravity g̃ is chosen equal to
0.000033. Hence, the time scale for this simulation is t̃0 = 6900. The Bond number is
approximately equal to 0.5.

The ratio of moments of time corresponding to the breakdown of the liquid bridges
separating the holes in simulation and in experiment (Fig. 8d and Fig. 12g) is about 1/4
which is close to the value obtained in Fig. 11.
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The main difference with the experiment shown in Fig. 8 arises near the side walls
because of the meniscus effect. The limited grid resolution did not allow us to describe it
better in simulations. However, even the qualitative results obtained in computer simu-
lations are very useful and allow one to understand many physical features of the system
simulated.

4.3 Numerical simulations of liquid films on a liquid substrate

The results of computer simulations of the rupture of the films on the liquid substrate are
shown in Figs. 13 and 14. The LBM with two components has been used for simulation
of the more complicated two-layer system of immiscible liquids. For each component,
the different set of LBM distribution functions is used. For the two-layer system, the cell
bottom is considered also as wettable.

The reduced density of liquid film ρ̃ is equal to 1.93. The dimensionless value of
surface tension is equal to σ̃=1.8. The reduced acceleration of gravity g̃ is chosen equal
to 0.000033. The dimensionless parameter k = 0.01. The initial thicknesses of the films
d̃ are equal to 14 and 25 for simulations shown in Figs. 13 and 14, respectively. The
corresponding Bond numbers are approximately equal to 0.7 and 2. The parameter

√
La

is approximately equal to 7 in these simulations at the values of the relaxation time τ=1.0
and of the cell width L̃=160.

Owing to the effect of viscosity, the fluid motion in the thin film generates motion in
the liquid substrate. The interface of the liquid substrate does not remain flat, but the
accommodation occurs because of gravity and surface tension (see Fig. 13).

Figure 13: The rupture of the thin liquid film on the liquid substrate. t= 3450 (a), 4450 (b), 4950 (c), 5550
(d). Lattice is 160×160×80.
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Figure 14: Merging of two holes in the film on the liquid substrate. t=4300 (a), 8000 (b), 13600 (c), 35200(d).
Lattice is 384×160×112.

The results of simulation of the film on the liquid substrate in the case of two initial
holes are shown in Fig. 14.

In the case of the no-slip and impermeability boundary conditions the thin layers
are present at the surface of the walls permanently. The oscillations of the liquid flows
attenuate in time. Of course, the shape of the liquid film shown in Fig. 14d corresponds
to a transient state, which approaches the steady state asymptotically. It is observed that
the flows of liquid films for single-layer on the nonwettable substrate and for two-layer
arrangements are qualitatively similar.

5 Conclusions

The lattice Boltzmann equation method is used for three-dimensional computer simula-
tions of the rupture of thin liquid films on the surface of solid and liquid substrates due
to the thermocapillary effect (Marangoni effect) for prescribed temperature distributions.

This paper presents the results of numerical and physical experiments on the rupture
of thin liquid films spread over a heavier immiscible liquid substrate in a rectangular cell.
The drastic variations of the shape of the holes in the liquid film occur due to the action
of surface tension and the interaction with the wettable walls of the rectangular cell.

The interaction of two holes has been studied experimentally as well as in computer
simulations. Both holes increase with time, and the liquid bridge separating the two holes
is destroyed after some time. After merging, the resulting single hole evolves toward the
ultimate stationary oval-shaped state.

Evolution of holes in liquid films is simulated for two-layer systems of immiscible flu-
ids. Gravity plays an important role in this process. A reasonable qualitative agreement
is observed between experimental and numerical results.
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