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Abstract. An entropy stable fully discrete shock capturing space-time Discontinuous
Galerkin (DG) method was proposed in a recent paper [20] to approximate hyper-
bolic systems of conservation laws. This numerical scheme involves the solution of a
very large nonlinear system of algebraic equations, by a Newton-Krylov method, at
every time step. In this paper, we design efficient preconditioners for the large, non-
symmetric linear system, that needs to be solved at every Newton step. Two sets of
preconditioners, one of the block Jacobi and another of the block Gauss-Seidel type are
designed. Fourier analysis of the preconditioners reveals their robustness and a large
number of numerical experiments are presented to illustrate the gain in efficiency that
results from preconditioning. The resulting method is employed to compute approxi-
mate solutions of the compressible Euler equations, even for very high CFL numbers.
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1 Introduction

Hyperbolic systems of conservation laws are systems of nonlinear partial differential
equations that model many interesting phenomena in physics and engineering. Exam-
ples include the shallow water equations of oceanography, the compressible Euler equa-
tions of aerodynamics, the magnetohydrodynamics (MHD) equations of plasma physics
and the equations of nonlinear elastodynamics [6].
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It is well known that solutions of systems of conservation laws can form disconti-
nuities such as shock waves, even when the initial data is smooth. Hence, the solutions
of systems of conservation laws is interpreted in the weak (distributional) sense. These
weak solutions are not necessarily unique. Further admissibility criteria in the form of
entropy conditions need to be imposed in order to guarantee uniqueness. Detailed for-
mulation of entropy solutions is provided in Section 2 and in standard textbooks such
as [6]. But in fact, recent work [11, 14] suggests that the notion of solutions has to be
further weakened into the more general entropy measure valued solutions in order to ob-
tain wellposedness for multi-dimensional systems of conservation laws. Measure valued
solutions are space-time parametrized probability measures and are shown to be natural
limits of numerical approximations [11].

1.1 Numerical schemes

Given the nonlinear nature of systems of conservation laws, it is not possible to obtain
explicit solution formulas. Consequently, numerical methods play a key role in the study
of these equations. Various numerical methods of the finite difference, finite volume,
finite element and spectral type are available for the approximation of systems of con-
servation laws. In particular, the finite volume (difference) methods, that update cell av-
erages (point values) in terms of numerical fluxes, are heavily used [28]. The numerical
fluxes are obtained by using exact or approximate Riemann solvers. Higher-order spa-
tial accuracy results from non-oscillatory piecewise polynomial reconstruction in each
cell. Reconstruction procedures such as TVD [28], ENO [17] and WENO [30] are typi-
cally employed. Higher order temporal accuracy is achieved by using strong stability
preserving (SSP) Runge-Kutta (RK) time integrators. An alternative to high-order finite
volume methods is the discontinuous Galerkin finite element method [4,5]. At lowest
(first) order, these methods reduce to the standard finite volume method. However, high-
order accuracy is obtained by using piecewise polynomial test and trial functions in each
element. Limiters are employed to damp oscillations near shocks. Temporal accuracy
is again increased by using SSP-RK methods. High-order finite volume methods and
RKDG methods have been very successful in carrying out realistic large scale simula-
tions of conservation laws [31].

The key questions in the numerical analysis of systems of conservation laws are that
of stability and convergence of numerical schemes [15]. These questions have been care-
fully investigated in the simple case of scalar conservation laws. For this class of prob-
lems, first-order monotone schemes [15] satisfy a discrete maximum principle, a discrete
form of the entropy inequality as well as the TVD property. Hence, they can be shown to
converge to the entropy solution. Similar results have also been derived for higher order
schemes, see [12] and references therein. However, the questions of stability and conver-
gence are much harder to tackle for systems of conservation laws. For such equations,
entropy stability, i.e., compliance with a discrete form of the entropy inequality, seems
to be a reasonable stability requirement for numerical schemes [32]. Entropy stable finite
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difference schemes were developed in the pioneering papers of Tadmor [32,33], see [9,24]
for recent advances. More recently, arbitrarily high-order entropy stable finite difference
schemes were proposed in [10]. Furthermore, these TeCNO schemes were also shown
to converge to the appropriate notion of entropy measure valued solutions for systems of
conservation laws [11,12].

Although these entropy stable finite difference schemes have nice theoretical proper-
ties and are shown to be quite efficient computationally [10,11], they are still deficient in
the following manner:

i. The entropy stable schemes of [10,32,33] are semi-discrete. The time integration is
performed using SSP Runge-Kutta methods and the resulting fully discrete scheme
may not inherit the entropy stability and convergence properties of the semi-dis-
crete scheme.

ii. The TeCNO schemes are restricted to Cartesian grids in several space dimensions.
Some first-order entropy stable schemes are available for unstructured grids such
as those in [24, 33] and references therein. However, it is unclear if these schemes
can be extended to arbitrarily high-order of accuracy.

Given the above deficiencies, the existing entropy stable finite difference schemes are not
suitable for the approximation of multi-dimensional systems on domains with complex
geometry.

1.2 Space-time DG methods
The above discussion illustrates the need for a numerical method that is

(a.) (Formally) arbitrarily high-order accurate.
(b.) Entropy stable.

(c.) Convergent to entropy solutions of scalar conservation laws as well as entropy mea-
sure valued solutions of systems of conservation laws.

(c.) Fully discrete in both space and time.

(d.) Able to approximate problems with complicated domain geometry such as those
discretized with unstructured grids.

It turns out that suitable space-time discontinuous Galerkin (DG) methods satisfy all the
above requirements. These finite element methods, based on piecewise polynomial basis
functions without any continuity conditions across elements, were considered in [25-
27] and references therein, see also [23]. A more modern take on these methods with
suitable shock capturing and streamline diffusion operators was provided by Barth [1]
and references therein. In a recent paper [20], we considered a variant of this method and
proved it to be entropy stable and convergent to entropy measure valued solutions for
systems of conservation laws. Convergence to entropy solutions of scalar conservation
laws is considered in a forthcoming paper [19].
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1.3 Aims and scope of the current paper

The shock capturing space-time DG method of [20] is based on a judicious combination
of the use of entropy variables as degrees of freedom, suitable entropy stable spatial nu-
merical fluxes, streamline diffusion operators as well as a residual based shock capturing
term. The method is implicit in time and involves the solution of a large nonlinear sys-
tem of algebraic equations, at every time step. This nonlinear system is solved in [20]
and references therein (see also Section 3), using a damped Newton method. In turn, the
Newton solver requires the solution of a linear system at every Newton sub-step. This
linear system is very large, sparse and non-symmetric. Using direct solvers is out of the
question on account of the large system size. Hence, we need to use suitable iterative
Krylov type linear system solvers. The design of such solvers is quite complicated as the
Jacobian is not well-conditioned. Hence, we need to employ suitable preconditioners to
keep the number of Krylov iterations, per Newton step, reasonable. In fact, the design of
suitable preconditioners is perhaps the single most important step in enhancing the computational
efficiency of the space-time DG method. The description of such preconditioners is the main
aim of the current paper.

In the current paper,

e We describe the shock capturing space-time DG method of [20] and highlight the
need for preconditioning the resulting linear system at each Newton sub-step of
every time step.

e We design suitable preconditioners of the block Jacobi and block Gauss-Seidel type
for the resulting linear system.

e We will analyze these preconditioners in order to explain why they work for a large
range of mesh sizes as well as time step sizes.

e We present a large set of numerical experiments to illustrate the efficiency of the
preconditioners and to demonstrate the robustness of the space-time DG method
in approximating systems of conservation laws.

To this end, the rest of the paper is organized as follows. In Section 2, we describe the
continuous problem for systems of conservation laws and define the notions of entropy
solutions as well as entropy measure valued solutions. The shock capturing space-time
DG method of [20] is presented in Section 3 and different computational aspects of the
method are highlighted in Section 4. In Section 5, we describe the block Jacobi precondi-
tioners. The block Gauss-Seidel preconditioners are described in Section 6.

2 The continuous problem

The generic form of the Cauchy problem for a system of conservation laws is
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d
Ui+ Y F'(U)y,=0, (xt)eQxRy,
k=1

U(x,0)=Up(x), x€Q. (2.1)

Here, Ry =[0,00), Q C RY (d=1,2,3) is a spatial domain and U: Q)+ R™ is the vector of
unknowns. F¥ is the (smooth) flux vector in the k-th direction.

2.1 Entropy solutions

The system of conservation laws (2.1) is termed hyperbolic if the directional Jacobians
Zi:l du (Ffvi), have real eigenvalues and an eigenbasis for every normal direction v. As
mentioned in the introduction, the presence of discontinuities such as shock waves im-
ply that the solutions of (2.1) are interpreted in the following weak sense, i.e., for every
compactly supported test function g€ (C¥(Q xR, ))", Ue (L'(QxR4))" is said to be a
weak solution of (2.1) if the following integral identity is satistied:

k
/}R /()((U,(pt Z (F*(U U)e,, )dde—/ U(x,0),¢(x,0))dx=0. (2.2)

Here, we have implicitly ignored boundary conditions by considering test functions that
are compactly supported in the spatial domain ).

Weak solutions are not necessarily unique. Additional admissibility criteria or entropy
conditions need to be imposed in order to single out the physically relevant solutions of
(2.1). We assume that there exists a strictly convex entropy function S and entropy flux
functions QF such that the following compatibility conditions are satisfied,

ouQF=(V,ouF"), Vk=12,--,d. (2.3)

Here, V=0yS is termed as the vector of entropy variables. The weak solution U of (2.1)
is said to be an entropy solution [6] if it satisfies the entropy inequality,

d
Si+Y, Q4 <0, (24)
k=1

in the sense of distributions.
Integrating the entropy inequality (2.4) in space results in the estimate,

d
o /Q S(U(x,1))dx <O0. 2.5)

This bound on the total entropy, together with the strict convexity of the entropy function,
yields an L? stability estimate for the entropy solution U [6]. This “energy” estimate is
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currently the only available generic global a priori estimate for systems of conservation
laws [6].

Furthermore, as the entropy S is strictly convex, the conservative variables U and the
entropy variables V are one to one [6]. Consequently, the conservation law (2.1) can be
recast in terms of entropy variables as,

d
U(V)i+ Y_F(V),, =0, (x,t)eQxR,. (2.6)
k=1

Here, we have used the change of variable U=U(V) and retained the notation F¥(V) =
F¥(U(V)) for all k for notational convenience. When convenient, we will work with the
equivalent representation (2.6) of the conservation law (2.1)

2.2 Entropy measure valued solutions.

Wellposedness of entropy solutions (weak solutions that satisfy the entropy inequality
(2.4)) is only available for scalar conservation laws (in several space dimensions) and
for one-dimensional systems [6]. No generic global existence and uniqueness results
for entropy solutions of multi-dimensional systems are currently available. In fact, non-
uniqueness of entropy solutions for some specific multi-dimensional systems have been
established recently in [3] and references therein. Furthermore, it was recently estab-
lished in [11] (see also [14]) that state of the art numerical schemes such as the entropy
stable TeCNO schemes of [10] may not even converge to an entropy solution as the mesh
is refined. Thus, one needs to consider a more general concept of solutions of (2.1) in
order to establish existence and stability of solutions and in order to realize the limit of
stable numerical approximations. A suitable notion of solutions is provided by the frame-
work of entropy measure valued solutions [11]. As first suggested by DiPerna in [7], we
consider a probability (non-negative with unit mass) measure y, realized as a map:

p:(x,t) €QxRy— Prob(R™),

for each x,t and define it as a measure valued solution of the system (2.1) (based on the
equivalent representation (2.6)) if it satisfies,

d
/ / <<U,ﬂx,t><m+Z<F",ﬂx,t>¢xk>dxdt=0, (2.7)
QJRy k=1

for all test functions g € (C®(Q) x (0,00)))™. Here,

(Bottes) = [ 8N (A).

Note that we realize the Young measure in terms of the entropy variables V. The corre-
sponding Young measure for the conservative variables U can be realized as U(p), using
the one-one mapping U(V).
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Furthermore, as the system (2.1) is equipped with an entropy function S and entropy
flux functions QF for k=1,2,---,d, then y is defined to be an entropy measure valued
solution of (2.1) if it is a measure valued solution as well as it satisfies,

d
/Q/IR+ <<S,F’x,t>¢t+lg<Qk,yx’t>q)xk>dxdt20, (2.8)

for all non-negative test functions 0 < p € C°(Q x (0,00)).

It is well known that measure valued solutions reduce to the standard notion of weak
solutions of (2.1) if the measure-valued solution is atomic, i.e., p=0y(y ) [7]. However,
examples in the recent paper [11] do suggest that entropy measure valued solutions are
not necessarily atomic.

3 The shock capturing space-time DG method

As mentioned in the introduction, we seek a numerical method that is entropy stable, i.e.,
it satisfies a discrete form of the entropy inequality (2.4) and it converges to an entropy
measure valued solution (as defined above) of the system (2.1) as the mesh is refined.
The shock capturing space-time DG method of [20] is one such numerical method. We
describe this method below.

3.1 The mesh

At the n-th time level t", we denote the time step as At" and the update time interval as
["=[t",¢"*1) and "1 —#"=At". For simplicity, we assume that the spatial domain QCIR?
is polyhedral and divide it into a triangulation 7, i.e., a set of open convex polyhedra
K C RY with plane faces. Furthermore, we assume mesh regularity [25]. For a generic
element (cell) K, we denote

Axg =diam(K),
N(K)={K €T :K'#KAmeas;_1(KNK')>0}.
The mesh width of the triangulation is Ax(7) =maxgAxg. A generic space-time element

is the prism:
Kx1I".

We also assume that there exists a constant C > 0 such that (1/C)Ax < At" < CAx for all
time levels n.
3.2 Variational formulation

Following [1, 20, 33], we approximate the equivalent representation of the conservation
law (2.6) by a DG method. On a given triangulation 7 with mesh width Ax, we seek
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entropy variables

V& ey, =(P,(Qx[0,T]))"

— 1 " Wlgxm is a polynomial of (3.1)
N {W < (L (Q@x[o, TD) " degree p in each component

such that the following quasilinear variational form is satisfied for each WA* € V):
B(VA W) = B o (VAY, WAY) 4 Bsp (VAY, WAY) - Bsc (VAY, WAY) =0. (3.2)
We elaborate on each of the three quasilinear (nonlinear in the first argument and linear

in the second) forms in the following.

3.3 The DG quasilinear form
The form Bpg is given by,

B (VAY, WA

:—Zx/n/< u(vy) wAX>+Z<Fk (VA), w§;>>dxdt
+ZZ/ Vi Vi ) Wik - dx_zn:;/K<U(Vﬁ,x_,Vﬁ,1),Wﬁlﬁ>dx
TL T (e viow ke ot

n K KeN(K

——ZZ y / /KK, (W DV~ V) Ydo(x)d. (3.3)

n K KeN(K
Here we have employed the notation,

W+ (x) =W(x,th),

KK’ =KNK’,

vk = Unit normal for edge KK’ pointing outwards from element K,
Wk +(x,t)= limW(xj:hv,t), Vx €dkkr,

D=D(VR" V& ;vkx')
for all WeV,. We remark that the boundary condition is ignored in the above varia-

tional form by considering compactly supported (in the spatial domain) solutions and
test functions.
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3.3.1 Numerical fluxes

Both the temporal and spatial numerical fluxes, need to be specified to complete the
description of the DG quasilinear form. In order to obtain causality (marching) after each
time step, we choose the temporal numerical flux to be the upwind flux:

U(a,b)=U(a). (3.4)

This ensures that we can use the values at the previous time step in order to compute an
update at the time level t”. Any other choice of temporal numerical fluxes will imply that
all the degrees of freedom (for all times) are coupled and force us to solve a very large
non-linear algebraic system of equations.

The spatial numerical flux consists of the following two components.

3.3.2 Entropy conservative flux

The entropy conservative flux (in the k-th direction) is any flux [32] that satisfies the
relation:

(b—a,F* (a,b)) =¥*(b) —¥*(a). (3.5)

Here, ¥* = (V,Ff) — QF is the entropy potential. The existence of such fluxes (for any
generic conservation law with an entropy framework) was shown by Tadmor in [32].
More recently, explicit expressions of entropy conservative fluxes for specific systems of
interest like the shallow water equations [9] and Euler equations [24] have been obtained.

3.3.3 Numerical diffusion operators

Following [9,10, 33], we choose the numerical diffusion operator as,
D(a,b;v) =R,P(Ay(-);a,b)R; . (3.6)
Here, A,,R, are the eigenvalue and eigenvector matrices of the Jacobian dy((F,v)) in the

normal direction v. R, is evaluated at an averaged state, e.g. (a+b)/2, and scaled such
that R,R] =Uy. P is a non-negative matrix function. Examples of P include

a+b
A ()

P(Ay(-);a,b) =max{Amax(a;V),Amax (b;v) }ID,

P(Ay(-);a,b) =

which leads to a Roe type scheme and

which leads to a Rusanov type scheme [10], where Apax (U;v) is the maximal wave speed
in direction of v, i.e., Amax(U;v) is the spectral radius of A, (U).
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3.4 Streamline diffusion operator

There is no numerical diffusion in the interior of the space-time element K x I"*. In order
to suppress the resulting unphysical oscillations near shocks, we choose the following
streamline diffusion operator,

Bsp (VA WAY)
_ZZ/ / <<UV VAx WAX—FZF" VM)W?,(X>,DSDRes>dxdt (3.7)

with intra-element residual:

d
Res=U(VA%),+ Y F (VAY),, (3.8)
k=1
and the scaling matrix is chosen as

D°P =CSP AU (VAY), (3.9)

for any positive constant C°P. Note that the intra-element residual is well defined as we
are taking first-derivatives of a polynomial function.

3.5 Shock capturing operator

The streamline diffusion operator adds numerical diffusion in the direction of the stream-
lines. However, we need further numerical diffusion in order to reduce possible oscilla-
tions at shocks. We use the following shock capturing operator (similar to Barth [1]):

BSC (VAx WAx)

-2 [ foss (e

with

<W?X,UV VAx> i<w“ )VA">>dxdt, (3.10a)

VH,K:;)/IW/KVAX(JC,t)dxdt

meas(I"* x K
being the cell average and the scaling factor,
Dik

AxC5CResy, x+Ax(At") ~1/2C5“BRes
xC°“Res, x+Ax(At") =/ “C esn K (3.10)

n ~_ d ~_ ’
\/ [ Jx <</§x )2 <VtAX,UV(Vn,K)VtAx>—|—k§ <V§;,UV(Vn,K)V§;>> dxdt+e
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0
with e:Ax%*l(At”)% (ﬁ’@) ,0>1/2 (chosen as 1) and

EH,K:\//In/K<Res,UV1(VAx)Res>dxdt, (3.10¢)

BRes, x = ( / HU(V,%,X_)—U(Vﬁj;)ufj;l(vﬁmdx
K

s[5

K/GN(K)In Akt

d
3 (B (VR VRS ) —F (VR ) vk
k=1

2

2
da(x)dt> . (3.10d)

1
—SD(VRY —VRY)

Uy (V)

Here, C°C,C5C are positive constants and for a symmetric positive definite matrix
AcR™ "™ and ac€R™ we denote ||a]|, =/ (a,Aa).

3.6 Analysis of the space-time DG method

The streamline diffusion shock capturing space-time DG method (3.2) was analyzed in
detail in the recent paper [20] and the following theorems were proved.

Theorem 3.1 (ENTROPY STABILITY). Consider the system of conservation laws (2.1) with

strictly convex entropy function S and entropy flux functions Q](<1 <k<a) For simplicity, assume

that the exact and approximate solutions have compact support inside the spatial domain (). Let
the final time be denoted by tN. Then, the streamline diffusion-shock capturing-Discontinuous
Galerkin scheme (3.2) approximating (2.1) has the following properties:

(i.) The scheme (3.2) is conservative, i.e., the approximate solutions U* =U(VA¥) satisfy

/QUAX(x,tN)dx:/QUM(x,tO_)dx. (3.11)

(ii.) The scheme (3.2) is entropy stable, i.e., the approximate solutions satisfy,

/Q S(U* (0 ))dx < /Q S(UM (x, V) )dx < /Q S(UM (x, 0 ))dx, (3.12)

with U* being the domain average:

U (0 ):m V()
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Theorem 3.2 (CONVERGENCE). Let UA¥ = U(VA¥) be the approximate solutions of the sys-
tem (2.1) generated by the streamline diffusion-shock capturing DG scheme (3.2). Under the
assumption that the approximate solutions satisfy the uniform L* bound,

HVMHLw(me) <C, (3.13)

the approximate solutions converge to a measure valued solution (2.7) of the conservation law
(2.1).
Furthermore, the limit measure valued solution p satisfies the entropy condition (2.8).

The above theorems (proved in [20]) show that the space-time DG method (3.2) is
entropy stable and it converges to an entropy measure valued solution of (2.1). The as-
sumption of the L* bound in the convergence theorem 3.2 can be relaxed as suggested in
the forthcoming paper [13] by considering a generalized version of the measure valued
solution that allows for concentrations.

Furthermore, the corresponding DG method was also proved to converge to the weak
solution of a linear, symmetrizable system in [20]. A variant of this method is also shown
to converge to entropy solutions of scalar conservation laws in [19].

Remark 3.1. As stated in [20], we need both the streamline diffusion operator as well as
the shock capturing operator in the proof of convergence. The main use of the streamline
diffusion operator is to bound the residual terms in a weak BV estimate and it is unclear
whether this residual can be bounded in the absence of the streamline diffusion operator.
The case for the addition of the streamline diffusion operator is further strengthened by
the fact that the Newton iterations for solving the resulting nonlinear algebraic system (at
every time step) need not converge in the absence of the streamline diffusion operator, as
reported in [20].

4 The computational method

We will now proceed to describe the concrete realization (implementation) of the varia-
tional formulation (3.2) for a given system of conservation laws (2.1).

4.1 Choice of basis functions

As the approximate solution of (3.2) VA* €V, we start by specifying a suitable basis for
this space of piecewise polynomials. To this end, we express VA* as a linear combination
of basis functions ¢y,; € Vy:

VA= Y 04k (4.1)
K,k,in

where 0<n<N-1,KeT,1<k<mand 1<i<n 7 and the coefficients 9%, are the degrees
of freedom. The indices indicate the support of the basis functions: We choose the basis
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functions ¢¥%,; such that they are nonzero only in one space-time element, i.e., ¢, is
nonzero in KxI". Furthermore, only one component, namely the k-th component for
¢Pir is non-zero. Also, we use the same scalar basis functions ki for all the components,
ie.,

(ki) =0k, 1<I<m. (4.2)

The scalar basis functions have to span IP,(K x I"). We use a set of shifted and scaled
monomials,

x,k,i

t,i _ p
t— NP L (g —xK
¢In<i’K><I" = < A > H Axg ’ (4.3)

k=1

where %X is the centroid of cell K and p*/, p**, k=1,---,d is the polynomial degree of the
i-th scalar basis function in ¢, resp. x-direction. We use a maximal degree of p, hence:

pt,i+ Z px,k,i S p (44)

scalar basis functions. This leads to a total number of
1+d+p)
p

In general there are ¢ = (1+i+lﬂ)

degrees of freedom of N.Nmny=N.N m( , where N, =|T| is the number of cells.

4.2 Quadrature rules

There are three types of numerical integration that have to be performed in evaluating
(3.2) over basis elements, namely, integration over whole space-time elements K x I", in-
tegration over spatial elements K, and integration over the edges of the elements and in
time dgx’ x I"". We use tensor product numerical integration formulas for the tensor prod-
uct domains K x I" and dggs X I". Hence, we only need to specify the quadrature rules
for the spatial element K, the edges dxx and the time interval I". For the integration
over triangles K, Dunavant quadrature rules of order 2p+2 are applied [8], while for the
integration over dxx and I", Gaussian quadrature rules of order 2p+2 are employed.

4.3 Choice of parameters

We specify the following parameter values, streamline diffusion coefficient C°P =10 and
shock capturing coefficients C5¢ =1 and C°¢ =0.1, in order to complete the description
of the numerical method (3.2). As mentioned in [20], the quality of numerical results was
rather insensitive to the choice of parameters.
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4.4 Nonlinear and linear solvers

Given the fact that the quasilinear form B is linear in the test function W27, it is enough
to consider all the basis functions ¢¥%,; as test functions in (3.2). Furthermore, the choice
of the upwind temporal flux (3.4) allows us to march forward in time, i.e., given the
approximate solution at time level ", we can determine the approximate solution at time
level t"*!. Combining the above facts and defining

Fy =BV, @%;),
we need to solve the following nonlinear algebraic system,
Fgj(9")=0, K'eT, 1<l<m, 1<j<ng, (4.5)

to determine the vector of all the degrees of freedom 9" in the n-th time slab.
We use a damped Newton method [18] to solve this system: Starting from an initial
guess 7, the approximation is iteratively improved by specifying,

O =0+ A, 507, i=0,1,2,-- (4.6)

using the Newton correction 60!. The damping parameter A; <1 is chosen using a line
search.

The Newton correction 69" at the current state 9" (for ease of notation we drop the
iteration index i) is computed from the linear algebraic system:

J'(9")60" =—F"(0"), (4.7)
with the Jacobian being given by
][lzllj,Kki:(FK/lj)ﬁZkil K/KIGT/ 1§k/l§m/ 1§Z,]§7’lf (48)

The Jacobian is formed analytically and the resulting matrix is assembled. This matrix
has a block structure with blocks of size mn s xmnys, we will denote them by [y, ;. The
block Jg, , corresponds to the coupling of the degrees of freedom of cell K’ to the degrees
of freedom of the cell K. As only degrees of freedom of neighbouring cells are (directly)
coupled, the Jacobian is sparse: Only the diagonal blocks J ; and a few offdiagonal
blocks are nonzero. The number of nonzero offdiagonal blocks for cell K’ is given by
the number of neighbouring cells of cell K’ and is therefore small. Fig. 1 illustrates the
nonzero structure of | for a two-dimensional Euler case.

Summarizing, the linear system that need to be solved in every Newton step (4.7),
consists of a matrix that is large and sparse. Furthermore, it is not symmetric. Direct
solvers, such as a sparse LU decomposition can be used in one space dimension but
the sheer magnitude of problem size prohibits the use of direct solvers in several space
dimensions. In particular, we need a scalable iterative solver.
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Figure 1: Nonzero structure of the Jacobian | for a 2-D Euler flow with 207 cells and p=2.

To this end, we use restarted GMRES (Generalized Minimal RESidual method) [29]
as the iterative solver (restart every 30 iterations). However, as shown in the next section,
our Jacobian matrix in (4.7) is not well-conditioned. It is well known [29] that iterative
Krylov solvers are not efficient when the underlying matrix is ill-conditioned. In par-
ticular, the number of iterations can become prohibitively large. Hence, it is absolutely
imperative to design suitable preconditioners for this problem.

5 Block Jacobi preconditioner

5.1 Description

Given the block diagonal structure of the Jacobian matrix in (4.7), it is natural to con-
sider block Jacobi preconditioners. The consequent preconditioner D is a block diagonal
matrix, specified as

n
Dy x =0k xJxr ks

so each block corresponds to an element K. Here, J is the Kronecker delta symbol.

We need to invert the above matrix D in order to apply the preconditioner. But this
corresponds only to inverting each block [ ; separately. This “local” inversion can be
performed by a standard LU decomposition with reasonable effort as the blocks are quite
small (of size mn ¢ x mny). Furthermore, the work per block does not grow with the num-
ber of cells N.. To illustrate typical block sizes that arise here, we consider the Euler
equations in two space dimensions with piecewise quadratic trial functions (p=2). These
equations consist of m =4 components and the polynomial degree p =2 leads in two di-
mensions to ny = (H%H) =10 degrees of freedom per component and cell. Therefore,
in this case the block size is 40x40. This (and even smaller) sizes are representative of

typical block sizes in defining the preconditioner and are amenable to a direct solve.
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5.2 Fourier analysis

Given any diagonalisable matrix A = XDX ™!, the fundamental estimate for the perfor-
mance of GMRES was provided by Saad and Schultz [29]:

<k(X) mi MlIroll. 5.1
Irmall<x(X) _min  max|p(A)[{rol (5.1)

Here «(X) = ||X||||X~!|| denotes the condition number, P, the space of polynomials of
degree at most m, o denotes the spectrum of A and ry, is the residual in the m-th step of
GMRES.

Given this basic estimate, we aim to compute the eigenvalues of the unpreconditoned
matrix ] in (4.7) as well as the preconditioned matrix D~!] in order to ascertain if the
preconditioner did improve the conditioning. We use the following simplifications in
order to make this problem tractable.

e We require periodic boundary conditions as we will use a Fourier transformation
of the system. Uniform grids are also assumed for simplification.

e As it is not possible (algebraically) to perform the analysis for a generic linearized
system, we will analyze the linear advection equation as a model problem.

5.2.1 Linear advection in one space dimension

We consider the simplest example of a conservation law, the linear advection equation:
us+au, =0 (5.2)

in the one-dimensional domain [—1,1] with periodic boundary conditions. For simplic-

ity we assume a > 0 and discretize (5.2) on a regular grid; numbered (here) O,---,N.—1

and choose a Rusanov diffusion operator in (3.6) resulting in an upwind spatial numer-

ical flux. Neglecting the shock-capturing operator, the resulting Jacobian in (4.7) for this

problem has the structure,

A B

B A

—J= B A =I®A+S®B (5.3)
B A

with fixed matrices A,BeR"" /™ (depending on p and the time step). Here, ® denotes

the Kronecker product and the matrix S is defined as,

1, j=k+1 modN,,
(S)]-k:{ J ¢ (5.4)

0, otherwise.
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Let F be the Fourier matrix, i.e.,

1 , ,
F=——(w*)N—d w=e 2M/Ne, (5.5)

VR ke

Since the matrix S is a circulant matrix, it can be diagonalised by the Fourier matrix as
S=Fdiag(d)F", (5.6)

with F* denoting the Hermitian of F and

d=+/N.F((S)oo, - (S)on.—1)"
=V/N.F(0,---,0,1)T
T

_ (wom_n,,..,w(Nc—n(Nc—l)) , (5.7)

Therefore

&j~(P®I)*(I®A+S®B)(F®I)
= (F*IF)® (IAI)+ (F*SF)®(IBI)
=I1®A+diag(d)®B

A+dyB
- A+diB (5.8)

where ~ denotes similarity.

From the above calculation, we have established that ﬁ J is similar to a blockdiagonal
matrix with blocks A-+d;B. Furthermore, observe that the number of cells N. only enters
the expression through the factors d;. However, as |d;| =1, Vi, the eigenvalues can only
lie on curves specified by the eigenvalues of A+¢'?B, parametrized by ¢. Hence, refining
the mesh (increasing N.) only leads to increase in the denseness of the eigenvalues on
these curves. Furthermore, assuming that none of these level curves cross the origin, the
closeness of the eigenvalues to zero is almost independent of the mesh size. These find-
ings are validated in Figs. 2 and 3. Furthermore as demonstrated in Fig. 3, the increase
of polynomial degree p leads to an increase in the number of degrees of freedom per ele-
ment (block size) and thus increases the number of curves on which the eigenvalues lie.
Next, we consider the role of the preconditioner,

1
—D=IRA. (5.9)
Ax
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Figure 2: Eigenvalues of &] and D] for the 1-D linear advection equation with different number of cells for
polynomial degree p=2.

The resulting preconditioned system is

DY =(I®A) (I A+S®B)
=I®I+S®A'B
~(FRD*(I®I+S® A 'B)(F®I)
= (F*IF)® (I11)+(F*SF)® (1A~ 'BI)
=I®I+diag(d)® A 'B

I+d0A_1B
_ [+d;A7'B , (5.10)

Let d denote the vector of eigenvalues of A~'B. Then the eigenvalues of [+d;A~'B (and
consequently of D~']) are given by 1+d;d. Since |d;| =1, the eigenvalues lie on circles 1+
ei‘f’d}, parametrized by ¢ (see Figs. 2 and 3). Hence, if the eigenvalues d~] of A~!B are small,
then the eigenvalues of the preconditioned system are clustered around one (therefore
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Figure 3: Eigenvalues of ﬁ] and D] for the 1-D linear advection for different degrees and for N, =160.

bounded away from the origin). This will clearly improve the spectral contribution to
the performance estimate (5.1) of GMRES.

However, it is clear from the estimate (5.1) that it is not enough to consider the distri-
bution of eigenvalues. We also need to study the conditioning of the eigenvector matrix
X in order to ascertain the performance of GMRES. To this end, we denote V as the matrix
corresponding to an eigenbasis of A~!B. (5.10) implies that X =F®V diagonalises D!].
Hence, its condition number is given by,

k(X)=x(F®V)

=x((FeI)(IaV)) (5.11)
<lFa1ltevi|Fen || |aev)| |
=x(V),

as the Fourier matrix F is unitary. Therefore, the condition number of X is bounded
independently of the number of cells N..
Combining the above results with (5.1), we establish that the number of iterations of
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Figure 4: Eigenvalues of ﬁ] and D~ with or without the shock capturing term (SC).

the Jacobi preconditioned GMRES is independent of mesh size. Furthermore, the small-
ness of the eigenvalues d will lead to a clustering of the eigenvalues of the preconditioned
matrix, away from the origin (as seen in Figs. 2 and 3). Hence, this analysis demonstrates
that the Jacobi preconditioner enhances the performance of GMRES, at least for the linear
advection equation.

5.2.2 Role of the shock capturing term

The inherent non-linearity of the shock capturing term in (3.10) implies that the varia-
tional formulation (3.2) is nonlinear, even when the underlying PDE is a linear conser-
vation law such as the advection equation. Consequently, the Jacobian matrix | in (4.7)
is solution dependent. In order to analyze the role played by the shock capturing term,
we consider the linear advection equation (5.2) with periodic initial data (5.16) and dis-
play the eigenstructure of the Jacobian at a typical time step in Fig. 4. The figure com-
pares the eigenstructure of the Jacobian as well as the preconditioned Jacobian, in the
absence and in the presence of the shock capturing term. As seen in the figure, the shock
capturing term has a very minor effect on the eigenvalue distribution in both the non-
preconditioned as well as preconditioned matrices. Its main effect is a distortion in the
shape of some level curves.

5.2.3 Linear advection in two space dimensions
As prototype for multi-dimensional problems, we consider the two-dimensional version
of the linear advection equation:

upt-a*uy+a’u, =0 (5.12)

in the domain [—1,1]> with periodic boundary conditions. We discretize this equation
with the space-time DG method (3.2) (neglecting the shock capturing term) on a uniform
rectangular grid with mesh size Ax. Following the previous section, we can write the
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Jacobian as,
1
12/ =I9I8A+S* RI®B+125'0C (5.13)

with fixed matrices A,B,C € R"/"*"/" (depending on polynomial degree p and the time
step) and the matrices S¥, SY, analogously defined as before. Fourier transforming in both
x and y directions, one can show that ﬁ J is blockdiagonal with blocks of the form

A+e?" B+e?'C (5.14)

parametrized by ¢* and ¢Y. The Jacobi preconditioned matrix is similar to a blockdiago-
nal matrix with blocks of the form

[+ A1 B+ A71C. (5.15)

The eigenstructure in 2-D is more complicated than in 1-D as, in general, A~'Band A~!C
are not simultaneously diagonalisable.

Hence, we will limit ourselves to numerical results in this case. In Fig. 5 the eigen-
values of ﬁ J and D~!] are shown for a regular triangular mesh. As in the 1-D case the
general structures remain the same, under mesh refinement. The distribution of eigen-
values is denser but is confined to a bounded region of the complex plane. Furthermore,
the preconditioner clusters the eigenvalues around 1 indicating that the preconditioner
does enhance the performance of GMRES in this case.

5.3 Numerical results
The Fourier analysis of the previous section indicates that

e The performance of the Jacobi preconditioned GMRES will be independent of the
mesh size.

e The performance of the preconditioned GMRES will be significantly better than
its unpreconditioned version as the eigenvalues of the preconditioned Jacobian are
clustered around 1. Hence, they are bounded away from zero, unlike that of the
unpreconditioned version, see Fig. 2.

The analysis was restricted to the model case of the one-dimensional and two-dimension-
al advection equations. We will evaluate the performance of the Jacobi preconditioner for
this model problem as well as the more complicated Euler equations of gas dynamics.

5.3.1 Linear advection equation in one space dimension

We consider the linear advection equation (5.2) in the domain [—1,1] with periodic bound-
ary conditions. The initial condition is

u(x,0) =sin(27x). (5.16)
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Figure 5: Eigenvalues of ﬁ] and D~1] for the linear advection equation in 2-D for p=2 for different number
of cells.

The quadratic entropy is used. Hence, the conservative and entropy variables coincide.
Furthermore, a Rusanov type numerical diffusion operator in (3.6) is used. We employ
piecewise Taylor polynomials for orders ranging from p =1 (piecewise linear) to p =4
(piecewise quartic) in this experiment. In each Newton step the linear system (4.7) is
solved up to a relative tolerance of 107%. The average number of Krylov iterations per
Newton iteration is depicted in Fig. 6. We compare the unpreconditioned system with
the system preconditioned by block Jacobi. As predicted from the analysis, the number
of iterations for both the unpreconditioned as well as preconditioned systems is indepen-
dent of mesh size. However and consistent with the analysis of the previous section, the
number of iterations is significantly reduced from around 30 (p=1), 70 (p =2), 500 (p=3)
in the unpreconditioned case to approximately 5 for the block Jacobi preconditioned sys-
tem. The unpreconditioned version does not even converge within 2000 iterations for
p =4, while the number of iterations for the block Jacobi preconditioned system is also
approximately 5. Furthermore, we see that the number of iterations for the block Ja-
cobi preconditioned case remains invariant even when the underlying order of piecewise
polynomials is increased from p=1 to p=4. This demonstrates a significant gain in ef-
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Figure 6: Number of Krylov iteration per Newton iteration for the one-dimensional linear advection equation.

ficiency due to the block Jacobi preconditioner as well as its robustness with respect to
increase in mesh resolution and in polynomial order of the underlying polynomials.

The approximate solution computed with piecewise linear and piecewise quadratic
basis functions (and with the preconditioned system) is plotted in Fig. 7. The figure
shows that the exact smooth solution is approximated very well with the shock capturing
space-time DG method. The quality of approximation improves with increasing mesh
size or increasing polynomial degree. This is also confirmed by the convergence study in
Fig. 8 in which, the relative L! error at the final time is shown with respect to increasing
number of cells and for varying polynomial degrees p=0,---,4. Convergence of order
p+1 is observed. This agrees also with the numerical experiments presented in [20],
where the same rate was observed for smooth solutions of the wave equations and of
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Figure 8: Convergence for the 1-D linear advection for different polynomial degrees p.

the Euler equations. In particular, the addition of the shock-capturing operator does not
deteriorate the convergence order.

5.3.2 Linear advection in two space dimensions

We consider the linear advection equation (5.12) in the domain [—1,1]> with constant
velocities a* =1 and a¥ =1/2. The initial condition is a bump at (—0.2,—0.2):

u(x,0)
_ %6716((x+0.2)2+(y+0.2)2) (1— 6716(x+1)2) (1— 6716(x71)2) (1— 6716(y+1)2) (1— 6716(y71)2).

(5.17)

At the inflow boundaries homogeneous Dirichlet boundary conditions are used.
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As in the previous case, we consider the quadratic entropy and a Rusanov type nu-
merical diffusion operator. The average number of Krylov iterations per Newton itera-
tion is displayed in Fig. 9. The unpreconditioned version works only for p =1, where
slightly more than 50 steps are needed. For p =2 the linear solver does not always con-
verge within the maximum number of 2000 iterations. With the block Jacobi precondi-
tioner, one needs only about 7 iterations to converge (both for p=1 and p =2). Further-
more, this number is independent of the mesh size. Thus, this example clearly illustrates
the enhancement in efficiency on account of the preconditioner. The approximate solu-
tion, computed with preconditioned space-time DG method (3.2) is shown in Fig. 10 and
shows that the method is able to approximate the advected solution quite well, both for
piecewise linear as well as piecewise quadratic basis functions.

5.3.3 Euler equations of gas dynamics

Next, we consider the nonlinear Euler equations of gas dynamics. In two space dimen-
sions, they are of the form,

U,+F!(U),+F*(U), =0,

U= (p,pu,pv,pE),

Fl(U)= (pu,pu2 +p,puv,puH),

F*(U) = (pv,puv,pv* +p,pvH) . (5.18)

Here, p is the density, u,v are the velocity fields and pE is the total energy. The auxiliary
quantities are the pressure p, sound speed ¢ and the enthalpy H given by
@ 1

o a0 _ P _ 102, .2
p=(r-1) (pE-gp02+0) ), = ol H= S e,
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and v is adiabatic exponent, which is set to 1.4 in all experiments.
Furthermore, the specific entropy is s =logp—ylogp, and the total entropy for the Euler
equation is given by,
B
S= P
The corresponding entropy variables as well as details of the numerical fluxes are pro-
vided in [20].

5.3.4 Sod shock tube

To begin with, we consider the Euler equations in one space dimension on the domain
[—5,5]. The Sod shock tube is a Riemann problem, centered at the origin, with initial left
state p=1, u=0, p=1 and initial right state p =0.125, u =0, p=0.1. We use the entropy
conservative flux for the Euler equations derived in [24], see also [10], together with a
Rusanov type of diffusion. Again, we are interested in the average number of Krylov iter-
ations per Newton iteration, see Fig. 11. The case without preconditioner is not included
as it needs several hundred iterations or fails to converge to the desired tolerance within
2000 iterations. However, with the block Jacobi preconditioner, the specified relative tol-
erance of 10~* is reached within only about 7 (p=1) or 8 (p =2) iterations. Furthermore,
the number of iterations is totally independent of the number of mesh points.

The computed density for different mesh resolutions and different polynomial orders
is displayed in Fig. 12. The space-time DG method approximates the solution, consisting
of a shock wave, a contact discontinuity and a rarefaction wave, quite well. There is a sig-
nificant gain in accuracy when the number of mesh points is increased. The subsequent
gain in accuracy on increasing the polynomial degree from one to two is rather moderate.
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5.3.5 Two dimensional Euler vortex

Next, we consider the advection of an Euler vortex (see [10] for the setup) in the domain
[0,10]2, with Dirichlet boundary conditions and a vortex centred at x.=5,y., =5 withr.=1
as initial condition:

u=1=(=y9(n), v=T+(—xp(r), 0=1="2(r7, s=0,

where 0 =p/p, s=logp—logp, r=/(x—xc )2+ (y—yc)2, p(r) =ee®1- /1) e =5/(27)
and o =12.
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The iteration numbers are shown in Fig. 13. Also in this case, the number of Krylov
iterations is quite small for the block Jacobi preconditioned system: about 7 (p =1) or
9 (p = 2) iterations per Newton iteration. The number of iterations is also indepen-
dent of grid size. The computed solutions are shown in Fig. 14 and demonstrate that
the shock capturing DG method approximates the underlying exact solution (vortex ad-
vected along the diagonal) quite well. Summarizing the results of the above numerical
experiments, we observe that the block Jacobi preconditioner does significantly reduce
the number of Krylov iterations per Newton step, compared to the unpreconditioned
version. Combined with the observed independence of the number of the iterations with
respect to mesh size, the preconditioner increases the efficiency of the shock capturing
space-time DG methods by orders of magnitude.
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5.4 CFL dependence

The time step for the space-time DG method (3.2) is determined using the CFL number
by the formulas,

AXK

A" <CE mi , 5.19
- Ker%l'gleK Amax (UA* (x, 1)) (5-19)
in one space dimension and
K|
A" < CCFL min EXTY (5.20)

KET x€K Amax (UAY (x, 1))’

in two space dimensions. Here Apax (U) =maxy, Amax (U;v) is the maximal wave speed in
all directions and the constant C“' is typically chosen to be 1/2.

One of the attractive features of the shock capturing space-time DG method is the
fact that the method remains entropy stable as well as convergent to the entropy mea-
sure valued solutions for any finite value of the CFL constant CfL. In particular, large
CFL constants (large time steps) are allowed. This possibility of setting large time steps
enables the space-time DG method to be efficient in resolving problems involving con-
vergence to steady state (such as in aerodynamic calculations) or problems with multiple
time scales (such as in radiation hydrodynamics). See the forthcoming paper [21] for fur-
ther examples. Hence, it would be useful to design preconditioners that can work in the
large time step (CFL number) regime.

5.4.1 Fourier analysis

We perform the Fourier analysis for the linear advection case, as in the previous section
but allow for a dependence on the CFL number. The eigenvalues of the unpreconditioned
as well as block Jacobi preconditioned matrices are shown in Fig. 15). The results show
that some of the eigenvalues of A~!B get larger when the time step is increased (for the
same mesh size). Consequently, the eigenvalues of the preconditioned matrix are no
longer clustered around one and come close to zero. This will lead to a deterioration
in the performance of the preconditioner and will increase the number of iterations per
Newton step.

5.4.2 Numerical results

This lack of robustness of the block Jacobi preconditioner to increasing the CFL number
is examined through a numerical experiment for the one-dimensional linear advection
equation. The same set-up as in the previous subsection is used and the average num-
ber of iterations per Newton step, for both the unpreconditioned and preconditioned
systems is shown in Fig. 16. As seen from the figure and consistent with the Fourier
analysis, the number of iterations increases significantly with increasing CFL number.
In particular, the block Jacobi preconditioner is quite well-behaved till a moderate CFL
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Figure 16: Number of Krylov iteration per Newton iteration for the linear advection equation in dependence of
the CFL number (N, =640).

number of around 10, but the number of iterations increases significantly with further
increase in the CFL number.

The following heuristic explains this observed dependence of the block Jacobi pre-
conditioner with the CFL number. The exact solution of the conservation law has a finite
speed of propagation, due to the hyperbolicity of the system. Even though the implicit
formulation of the space-time DG method couples all the degrees of freedom (and there-
fore allows an infinite speed of propagation), one can still expect that most effects are
local as they eventually approximate the exact solution. Block Jacobi is acting on the de-
grees of freedom of each cell separately, i.e., it is a local solver. So for small CFL numbers
one expects it to be a good preconditioner as the time step is too small for information to
propagate significant distances in the domain. However, the higher the CFL number, the
further is the information allowed to travel, i.e., it will cross more and more cells in just
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one time step and the effects become increasingly non-local. Therefore block Jacobi, as it
is a local solver, can not resolve these waves and will fail.

6 Block Gauss-Seidel Preconditioners

The above discussion suggests that a non-local preconditioner might be more robust with
respect to increasing the CFL number. In this context, we consider preconditioners of
the Gauss-Seidel type. To this end, we introduce an ordering of the cells and thus of the
Jacobian ] in (4.7) and define the block lower triangular part as

n
Lk =1k >xJg

and the upper triangular part as

_ n
Uk k= 1x<xJg k-

A simple block Gauss-Seidel preconditioner results from a forward sweep, i.e., using
D+L as a preconditioner. Applying the preconditioner to the system Jx =b results for
the forward version in

x=(D+L) 'b. (6.1)

We can also consider the symmetric version, where an additional backwards sweep using
D+U is performed, resulting in,

¥=(D+L)"'p,
x=x%+(D+U) Y (b—TJ%). (6.2)
The inversion of D+L resp. D+ U is performed cell by cell in forward resp. backward

direction. For each cell this corresponds to solving an mn X mny system as in the block
Jacobi case, but the important difference is that this inversion is performed sequentially.

6.1 Analysis of the spectrum

As before, we consider the one-dimensional linear advection equation with periodic
boundary conditions. The block GS preconditioned matrix is given by

(D+L) Y J=(D+L) " Y(D+L+U)=1+(D+L)"'U. (6.3)

The matrix (D+L)~U is strictly block upper triangular (there are only two nonzero
blocks) given the structure of | in (5.3). Hence, all eigenvalues are 1 and the block GS
is a perfect preconditioner in this case. Furthermore, this fact is independent of the CFL
condition. However, this is limited to the advection equation; for more general conserva-
tion laws the performance of block GS might be less striking.
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Figure 17: Number of Krylov iteration per Newton iteration for the linear advection equation.

6.2 Numerical experiments

6.2.1 One-dimensional linear advection

We consider the one-dimensional linear advection equation (5.2) with initial data (5.16).
The numerical set-up is exactly as before. The cells are ordered in the advection direction
and we use the forward version of the block GS preconditioner. The iteration numbers
are shown in Fig. 17. Only two iterations are required for the block Gauss-Seidel precon-
ditioned system to converge to desired tolerance. This number is independent of the grid
size. However, the real test of the block Gauss-Seidel preconditioner lies in increasing
the CFL number. The corresponding iteration numbers for different preconditioners are
shown in Fig. 18. The number of iterations with respect to the block Gauss-Seidel pre-
conditioner remains at 2 for any value of the CFL number. This is in marked contrast to
the significant increase in the number of the iterations for the unpreconditioned and the
block Jacobi preconditioned systems. The excellent preconditioning properties of block
GS for the advection equation was also observed earlier on in a slightly different context,
see [16]. However, it depends on the ordering of the degrees of freedom. There is a single
advection direction (a single flow of information) and the cells must be ordered in this
downwind direction for the block GS preconditioner to fully unleash its power.

6.2.2 2-D Euler: Vortex advection

We consider the advection of a vortex for the two-dimensional Euler equations. The
numerical set-up is exactly the same as in Section 5.3.5. The cells are ordered in the
direction of the vortex advection and we use the symmetric version of block Gauss-Seidel
(GS). Fig. 19 shows a comparison of the Krylov iteration numbers.  Using block GS
the iteration numbers drop to about 3 (p =1) or 4 (p = 2), which is about one half of
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the numbers for the block Jacobi preconditioned system. However, as the symmetric
block GS is twice as expensive (per step) as the block Jacobi. Hence, there is no gain in
performance with the block GS over the block Jacobi at this low CFL (C“FL =0.5).

The number of iterations with respect to increasing CFL number are shown in Fig. 20.
Here, both for block Jacobi and block GS, the iteration numbers grow with higher CFL.
The increase for block Jacobi is bigger than for block GS. Recalling that the symmetric
block GS iteration is about twice as costly as a block Jacobi iteration, the block GS is still
better by a factor of about 2 for CFL =50 as it needs only about 28 instead of 126 (p=1)
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Figure 20: Number of Krylov iteration per Newton iteration for the vortex advection problem in dependence of
the CFL number (N;=3312).

or only about 26 instead of 107 Krylov iterations (p =2). Thus, even if information is
no longer flowing in just one direction (the advection direction) but in all directions, the
performance gain with block GS over block Jacobi is less striking but still observable.

6.3 NACA 0012 aerofoil

As the final numerical experiment, we consider an Euler flow around a NACA 0012
aerofoil. The aerofoil is placed along the x axis, ranging from x =0 (head) to x =1
(tail). Slip boundary conditions are used on the aerofoil. An artificial outer boundary
is placed on a circle around (2,0) with radius 4, where the following freestream values
are prescribed: Mach number Ma,, = 0.75, pressure p., = 8.5419, density p. = 11.4452
and an angle of attack of 4°. We will compute and display the pressure coefficient
¢p=(P—Pe)/((1/2)pes ||uco||*), where u is the freestream flow velocity. At t=0, the
flow is initialized by freestream values. The equations are then solved up to t =3.5; the
time by which the steady state is approximately reached.

An unstructured mesh (consisting of triangles) is generated around the aerofoil. This
mesh is finer near the head of the aerofoil than near the tail. As a further modification,
we replace the shock capturing operator with a pressure scaled variant suggested in [20],
i.e., (3.10b) is replaced by

D!  (AxC5 Res,, x+Ax(At")~1/2C5CBRes,, )

nK
" . . (6.4)
\/f[n fK AAtxz VtAx,Uv(Vn,K)VtAX>+kZ <V%f,UV(Vn,K)V§kx>> dxdt+e
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with

L L /X4 P2 dxdt
DZ,K:AXZ At" K| f[” fK Zkfl pxkxk ' (65)

k
A ﬁ S Jipdxdt

Snapshots of the computed pressure coefficient ¢, are shown in Fig. 21. In addition, the
pressure coefficient ¢, along the upper and lower part of the profile is shown in Fig. 22.
As the steady state is the object of interest in the current computation, both results are
obtained with a very large time step resulting from C“L =500, in order to accelerate
convergence to the steady state. The results show that the transonic flow is resolved quite
well with the shock capturing space time DG method. The shocks are resolved sharply
and without strong oscillations. Furthermore, the smooth regions are also approximated
well. The resolution on the same mesh is noticeably better with piecewise quadratic basis
functions. The small oscillations in the profile plots for the p =2 case stem from the fact
that a piecewise linear boundary approximation is used. One can use curved elements
with piecewise quadratic boundary in this case to eliminate these small oscillations.

As we are also interested in the performance of the preconditioners developed herein,
we plot the average number of Krylov iterations per Newton step in this problem in
Fig. 23. In addition to the block Jacobi and the block GS (forward sweep), a further variant
of the block GS, the multi-block GS, is also considered. This preconditioner consists of
four sweeps; two forward sweeps, one based on the standard ordering and another on
an alternate ordering, coupled with two backward sweeps, performed with the directions
reversed. The cell are ordered in the free stream direction and the alternative ordering is
in the orthogonal direction. The results from Fig. 23 show that the number of iterations
is quite high. This is not unexpected, given the very high CFL number that is employed.
Nevertheless, all the preconditioners lead to a performance that is very mildly dependent
on the mesh size. The block Jacobi preconditioner has the worst performance, in terms of
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number of iterations as well as their growth with mesh size whereas the block GS and the
multi-block GS lead to only a moderate growth. Given the fact that the multi-block GS is
more expensive per step, both the block GS preconditioners show a similar performance
in this realistic test case.

As a further illustration of the computational costs incurred when using each of the
afore-mentioned methods, we present Table 1 that shows how much run time is incurred
by each part of the code (the experiments were performed on an Intel Core i5-3470T
processor). The three most expensive parts are the following,

e FuncEval represents the evaluation of the functional F”, i.e. the right hand side in
(4.7). It represents a very small proportion, at most 10% of the total cost.
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Table 1: Run times of different parts of the code (in % of the total run time) and total times (in s) for the
NACA 0012 aerofoil flow problem.

BlockJac | BlockGS | MultiBlockGS

p=1 | FuncEval 6 9 9
JacEval 17 27 26
LinSolve 77 64 65

- PCSetup 0 0 0

- PCApply 14 24 51

Total (N, =11953) 3323s 2102s 2126s

p=2 | FuncEval 3 4 5
JacEval 18 23 25
LinSolve 79 72 70

- PCSetup 1 1 1

- PCApply 15 27 54

Total (N.=2809) 2790s 2197s 2037s

e JacEval denotes the evaluation of the Jacobian matrix J/”. This is a moderately ex-
pensive part, with an average of 20—25% of the total cost for all solvers.

e LinSolve denotes the solution of the linear systems. This includes the two substeps
of constructing the preconditioner (PCSetup) and applying it (PCApply). The lin-
ear solves are the dominant part for all simulations, but especially for the Jacobi
preconditioned systems where they use 77 (p =1) or 79 (p = 2) percent of the run
time. The setup time for the preconditioner is negligible in all cases, but also the
application of the block Jacobi preconditioner consumes only 14 (p=1) or 15 (p=2)
percent of the run times. Once block Gauss-Seidel preconditioners are used, the
total run time drops considerably (thanks to the reduced number of Krylov itera-
tions), at the cost that applying the preconditioner covers a bigger ratio of the run
time. This is even worse with the MultiBlockGS preconditioner. Nevertheless, it
achieves the smallest total run time in case of piecewise quadratic functions.

Note that the unpreconditioned version failed to converge at least up to 5000 iterations.
This fact and the above table clearly demonstrates that preconditioning, particularly on
the (multi-)block Gauss Seidel type pays off, for this flow past an aerofoil.

7 Conclusion

The shock capturing streamline diffusion DG methods, designed and analyzed in the
recent paper [20] are particularly attractive for computing approximations of systems of
hyperbolic conservation laws as they are

e Arbitrarily high-order accurate.
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e Fully discrete.

e Well-defined and robust on unstructured grids for approximating multi-dimension-
al domains with complicated geometry.

e Entropy stable.

e Convergent to entropy solutions of scalar conservation laws as well as entropy mea-
sure valued solutions of systems of conservation laws.

e CFL number and time steps can be very large.

However, this class of methods are implicit and require a large nonlinear algebraic sys-
tem of equations to be solved at every time step. The nonlinear algebraic system is solved
using a Newton method. The resulting linear systems (at every Newton step) are large,
sparse but non-symmetric. Iterative solvers such as GMRES need a well-conditioned
linear system in order to converge within a reasonable number of iterations. This neces-
sitates the design of efficient preconditioners for the underlying Jacobians.

In this paper, we describe two sets of preconditioners to efficiently solve the linear
system. The first set is of a block Jacobi type. We employ Fourier analysis to demonstrate
that the resulting preconditioned system is well-conditioned. Numerical experiments
illustrate that the block Jacobi preconditioner performs in an mesh independent manner
and is far superior (in terms of the number of iterations) to the unpreconditioned system.

However, the block Jacobi method is not as robust to increasing the time step (CFL
number). Since, one of the attractive features of the space-time DG method is the ability
to take very large time steps, we propose non-local preconditioners of the block Gauss-
Seidel type for this case. These preconditioners are found to perform quite well, even for
very large CFL numbers.

A large number of numerical experiments, including examples of flows past aerofoils
are presented to demonstrate the performance of the preconditioners. Comparing the
two sets of preconditioners, the block Jacobi preconditioner is clearly well suited for low
to moderate CFL numbers. However, the block Gauss-Seidel preconditioner is suitable
for problem requiring very large time steps (high CFL numbers). One outstanding issue
with the block GS preconditioner is that of parallelization as it requires blocks to inverted
sequentially. This issue will be addressed in the future. Furthermore, we employ the
preconditioned shock capturing space-time DG method to compute all speed flows in
[21] and realistic flows on space-time adapted grids in [22].
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