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Abstract. We introduce efficient approaches to construct high order finite difference
discretizations for solving partial differential equations, based on a composite grid
hierarchy. We introduce a modification of the traditional point clustering algorithm,
obtained by adding restrictive parameters that control the minimal patch length and
the size of the buffer zone. As a result, a reduction in the number of interfacial cells is
observed. Based on a reasonable geometric grid setting, we discuss a general approach
for the construction of stencils in a composite grid environment. The straightforward
approach leads to an ill-posed problem. In our approach we regularize this problem,
and transform it into solving a symmetric system of linear of equations. Finally, a
stencil repository has been designed to further reduce computational overhead. The
effectiveness of the discretizations is illustrated by numerical experiments on second
order elliptic differential equations.
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1 Introduction and preliminaries

Adaptive mesh refinement (AMR) is a simple and popular framework to reduce the com-
putational overhead in dealing with large scale modern scientific computational prob-
lems. It is commonly used in a number of research areas, and there are several soft-
ware packages available that implement AMR to solve problems on different scales. For
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example, APBS [2,16] uses multilevel adaptive finite elements for solving the Poisson-
Boltzmann equation in order to study the chemical properties of complex molecules or
polymers and their microscopic behavior with implicit solvents. Macroscopic applica-
tions can be found in ENZO [7, 23], designed for multi-physics simulations in astro-
physics and cosmology. General purpose packages such as CHOMBO [10], developed
by a team at Lawrence Berkeley National Laboratory (LBNL), is designed for the solution
of multidimensional elliptic equations and time-dependent problems. Packages such as
PARAMESH [21] and AGRIF [12] are similar tools that have been developed for solving
partial differential equations (PDEs) in a parallel environment.

Based on an adaptive mesh hierarchy, there are several approaches for transforming
the partial differential equations into their discrete counterpart. Attempts that incorpo-
rate classical discretization methods like finite difference method (FDM), the finite el-
ement method (FEM), or the finite volume method (FVM) within the AMR framework
have been very successful. It was introduced by Berger and Oliger for the study of hyper-
bolic partial differential equations using an adaptive finite difference method (AFDM) [5].
This same discretization framework was used by Berger and Colella to carry out simu-
lations of hydrodynamic shocks [3]. More recently, this approach has been used for the
study of the phase separation process using the Cahn-Hilliard equations [8], for the study
of multiphase incompressible flows [9], and for simulating solid tumor growth [27], to
name just a few examples. This approach also has a long history within the finite ele-
ment community. It is a standard tool in elasticity theory computations, specially in the
study of solid fracture [25]. In recent years it has also proved to be a very effective tool
in electronic structure computations, within the orbital-free [15] or the Kohn-Sham [29]
approaches to density functional theory. The finite volume method could also be for-
mulated within an adaptive mesh refinement framework. In [19], the incompressible
heat flow problem was studied using an adaptive finite volume method (AFVM); in [17]
the authors investigated the multi-phase flow and transport in porous media based on
the same framework; and in [28, 31] the authors developed an adaptive coupled level-
set/volume-of-fluid (ACLSVOF) method for interfacial flow simulations on unstructured
triangular grids.

High order numerical schemes are also a trend for development of high performance
solvers and are necessary to simulate complex and large systems. There is also a large
body of literature on the subject. For instance, in [20] the authors reported a parallel
implementation of a solver for the Poisson-Boltzmann equation with periodic boundary
conditions using a sixth order finite difference scheme. The three dimensional sixth or-
der scheme is basically a Cartesian product of three one dimensional sixth order stencils.
An alternative approach to implement and achieve high order accuracy can be found in
compact schemes. For compact finite difference methods, explicit formulas have been
presented in earlier works. A compact fourth order scheme can be found in [30], while
a sixth order compact scheme is applied in [26]. Note that the sixth order compact dis-
cretization relies on derivatives of the right hand side. It is well known that compact
schemes higher than sixth order on uniform grids do not exist, unless derivatives of the



Q. Gu, W. Gao and C. J. Garcia-Cervera / Commun. Comput. Phys., 18 (2015), pp. 1211-1233 1213

Figure 1: A two-level example of composite grid in two dimension. This figure is also used to define the
classifications of cells. Imagine that every cell has a label, then interior region is labeled by nothing, the outer
interface cells are labeled by ‘/’, inter interface cells by *\’, the overlapping one ‘x’, and the redundant one ‘+'.

right hand side are available’. General purpose high order finite difference stencil cre-
ators are available, but mainly in one dimension [18]. In [14] Fornberg proposed a finite
difference scheme creator that could approximate arbitrary orders of derivatives. These
formulas are derived for an arbitrary spaced grid in one dimension in a recursive way:.
Other general purpose high order discretizations usually appear in the framework of the
finite element method. In this paper, we will present a general finite difference discretiza-
tion framework for some local differential operators that can be utilized on an composite
grid hierarchy, up to any order of accuracy:.

To motivate our discussion, we start with a description of some basic concepts in the
composite grid framework. Throughout our discussion, we will use two dimensional
examples to illustrate the setting. However, the reader should keep in mind that the
three dimensional case is just a straightforward generalization. We utilized the block-
structured composite grid, first introduced by Berger and Oliger for the solution of hyper-
bolic PDEs [5]. Note also that for convenience in the indexing we employ a cell-centered
scheme [4]. An example of a composite grid is shown in Fig. 1. In this figure, we see two
levels of grids. In general, we deal with /. levels of grids. Level £ =0 is always the
coarsest level, which covers the entire domain (). Finer grids are built upon the coars-
est one in a tree structure. For simplicity, we restrict ourselves to the case of equal step
length. Denote the finest grid step length as h. Then, the {-th level of grids QO is defined by
the union of all the sub-grids that have step length 2mx=‘.1;. We follow the conventional
assumptions [22] that the grids are properly nested, that is we have

R(P()) =0,
P (Q(-i-l) C le
where P is the projector from level ¢ to level £—1, and R is the restriction operator that

maps level ¢ to level /+1. Figs. 2(a) and 2(b) illustrate the properly nested property. In

tHere, compact means we only allow nearest grid points (or cells)
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__________________________

(b) Properly nested: side view

(c) Tree structure of composite grid hierarchy

Figure 2: Properly nested property and tree structure of composite grid hierarchy.

the next section, we will describe how to perform local refinements of the grids. This
composite grid hierarchy is organized in a tree structure, which is shown in Fig. 2(c). For
further details, we refer to [32].

The remainder of the paper is organized as follows: In Section 2, we describe a mod-
ified point clustering algorithm that is suitable for high order finite difference discretiza-
tion on a composite grid hierarchy. Section 3 is devoted to solving the stencil problems for
the high order finite difference schemes, including the introduction of the pre-selection
area, the existence and uniqueness of the resulting linear system, and the coefficients cal-
culator. We illustrate our approach with several numerical experiments in Section 4, and
finish with some concluding remarks in Section 5.

2 Modified point clustering algorithm

Our starting point is the point clustering algorithm proposed by Berger and Rigoutsos
in [6]. As we will see in the next section, constructing the special (high order) finite differ-
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ence schemes for interface points requires considerable overhead, so we hope to reduce
the number of cells in the interfacial region. To begin with, we discuss the classification
of grid points. In our implementation, we classify the cells into five classes:

1. Interior region. In this region, we ensure that standard finite difference (long) schemes
are directly applicable and there is no search or solve computational cost here.

2. Inner interface. For the cells at the inner interface, we need to construct finite dif-
ference stencils that are (at least) related to cell(s) on a finer level. Note that the
inner interface could overlap with the outer interface, as defined below. We save
the overlapping information at overlapping interfaces.

3. Outer interface. In this region, finite difference stencils need to be constructed ac-
cording to the exterior environment of this grid. It could happen that the stencil
will touch the physical domain boundary or touch another grid (either coarser or
finer or the same level, both situations could happen) or itself, if the boundary con-
dition is periodic. Note, again, that we also subtract the overlapping region.

4. Owerlapping interface. This is the overlapping region. Special stencils need to be
constructed for each cell.

5. Redundant region. These points do not belong to the set of degrees of freedom (DOF)
on the composite grid. Hence, there is no need to construct any scheme here.

One observation is that using the original algorithm in [6], this division process can
result in extremely small sub-grids, which will bring complexity for high order discretiza-
tions. As we will see in Section 3, the design for these special stencils is a non-trivial and
time-consuming process. Thus, we hope to reduce the number of interface cells.

In our current implementation, two natural ways could be helpful to overcome this
difficult, that is, to add some restrictions on the clustering algorithm by introducing
the concept of minimal length of a patch and the buffer zone. Algorithm 1 describes our
methodology.

The introduction of buffer zone is straightforward. Specifically, consider a grid with
some flags (i.e., the refinement labels) defined on it. We simply remove those flags on the
outer layer of the grid. The resulting patch will be the initial patch that drives the original
clustering algorithm.

For the minimal length restriction, one has to be careful in the splitting-for-signature
step in the clustering iteration. A quick return means that for those patches whose length
is already smaller than or equal to the minimal length restriction, we have no need to
split them again. As in the original algorithm, we prioritize the search for the zero-cut
opportunity. If there is no hole in the signature array, we try to find out the cut that has
the maximum discrete Laplacian jump (which means between these two points, there is
a zero, and the jump amplitude is the deepest). One needs to verify that the resulting
sub-patches will still meet the minimal length restriction.
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Algorithm 1 Modified Berger-Rigoutsos Point Clustering Algorithm

Require: Buffer zone length, minimal patch length, patch efficiency threshold 7;
Ensure: A series of patches;

1: Set current patch indicator i <1 and allocate a queue of patches;

2: Push the buffer-zone-free flagged grid into the queue;

3: while i < length of patch queue do
if efficiency of patch(i) > T and patch(i) is flag-free then

i+-+ and continue;

end if
Compute signature for each direction, i.e., [[flag(x)dx;dx;
Search a split position with minimal length take into account;
if no where to split then
10: i+-+ and continue;
11:  endif
12:  Split the patch into two sub-patches and append two sub-patches into the queue;
13: end while

In order to illustrate the effectiveness of the minimal length parameter, we consider
a two dimensional example defined on a unit square with a 100-by-100 meshing and an
“S”-shaped flag setting imposed on it, as is shown in Fig. 3.

1
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Figure 3: Flag setting.

We test four different minimal length settings, viz, minlen = 0,4,8,12. The result
of each case is shown in Figs. 4(a), 4(b), 4(c), and 4(d), respectively. Also, we tested
these four different minimal length settings under the buffer zone bfzone =20, shown in
Figs. 4(e), 4(f), 4(g), and 4(h).
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Figure 4: Output of the point clustering algorithm with different setting of minlen (the first parameter) and
bfzone (the second one). Figs. 4(a) is the result by the original Berger and Rigoutsos algorithm. Figs. 4(b),
4(c), and 4(d) are three results under the minimal length restriction, Figs. 4(e), 4(f), 4(g), and 4(h) are results

with buffer zone length equals to 20.

The statistics for the number of points is summarized in Table 1. As we can see, when

minlen increases, we are allowed to deal with fewer interface points, which leads to an
increase in the number of degrees of freedom. When we impose a thick buffer zone, the
number of interface points and of interior cells drop drastically. The risk is that some of
the flagged points are not going to be refined, which might downgrade the accuracy of
the solver.

Table 1: Statistics for point clustering algorithm with adjustable parameters.

(minlen, bfzone) (0,0) (4,0) (8,0) (12,0)
20999 19821 17408 14913
# Interface cells
N/A  (=594%) (—17.10%) (—28.98%)
. 25799 26655 28519 31102
# Interior cells
N/A  (+3.32%) (+10.54%) (420.56%)
(minlen, bfzone) (0,20) (4,20) (8,20) (12,20)
12172 11304 8696 6756
# Interface cells
(—42.04%) (—46.17%) (—58.59%) (—67.83%)
. 10089 10742 13176 14473
# Interior cells
(—60.89%) (—58.36%) (—48.93%) (—43.90%)
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We will see in Section 3.1 that the restrictions on minimal patch length and buffer zone
length not only gives us practical CPU time savings in setting stencils steps, but also are of
theoretical importance in ensuring breakdown in pre-selection area enlargement process.

3 Stencil generation

After running the point clustering algorithm, the geometric setting of the composite grid
hierarchy is fixed. The next central problem is to design special computational scheme
for each cell at interfacial region. To do so, we introduce the concept of stencil is used to in
constructing such computational schemes [24].

Definition 3.1. Let xg be the center of the cell at level ¢ in the composite grid hierar-
chy and let Lu(xp) be the quantity that is to be approximated by a linear combination
Z]-Iil cju(x;), where {xj}?’: o are cell centers chosen from composite grid hierarchy. We call
X= {x]-}]-li | the stencil positions and c={c; }]Ii , the stencil coefficients. We say that the triplet
(x0,X,¢) is a stencil at xo. The local truncation error is defined by

T=Lu(x)— )_cju(x;).

M=

Set the scaled stencil position &= 1 (x; —xo). If
t=0(h}), (3.1)
we say that (xo,X,c,m) is a mth-order stencil at xg.

For a one dimensional problem, finite difference formulas on arbitrarily spaced grids
can be found in [14]. A stencil adaptive algorithm is proposed by [13] for incompressible
viscous flows in two dimensional space with a refinement ratio \/2. However, there is no
literature found for arbitrary dimensional stencil construction in a composite grid setting.

For simplicity, we mainly focus on the generation of stencils to approximate the Laplace
operator. For Laplacian is a second order differential operator, we denote the scaled sten-
cil coefficients as w = {w; }X, = ch®. Note that our approach can also be applied to more
general differential operators. Note also that, without loss of generality, we set xg as 0.
We build up the mathematical formulation of the stencil generation problem.

Applying a Taylor expansion to (m+1)-nd order on (3.1) with remainder expressed
in the Peano form gives us

Au(0)— i\e nil —Zfa“u(o)wih“’d’z =0(h™),

i=1]a]=0 %
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where the standard multi-index notation is applied in & = (x1,a2,---,&4) and the standard
multi-index operations are also assumed. In matrix form, we have

- 7 T 0 | —coeff. of u™h=2, |a|=0,
0 —coeff. of u®h=1, |a|=1,
0% /! 27:1 e; | — coeff. of u®po, la| =2,
w| = 0 — coeff. of u®p!, || =3, (3.2)
0 — coeff. of ul®p"=1, |a|=m+1,
. HOT ] [O(™)] SHOT.

where i; stands for the rows that correspond to the derivatives of u'?%). Dropping the
higher order O(h™) in (3.2) and writing in compact form, we arrive at the governing
equation for stencil generation

Aw=Db, (3.3)

where

AEIRMXN weRNXl beIRMXl

Al /| +d—1 m—+d+1
=2 ()= ()

with

The central problem is to specify the set of scaled stencil position {d;} and their corre-
sponding coefficients {w;} so that (3.3) holds.

It is obvious that the smaller the stencil, the less computational cost required. Hence,
our stencil generator resorts to the following steps.

Step 1. Generate a “pre-selection area” of “selection radius” r on the composite grid and
compute {J;} according to the pre-selection area.

Step 2. Compute {w;}.

Step 3. Check accuracy requirement. If not satisfied, go to Step 1 with r=r+1.

We discuss the details of pre-selection area in Section 3.1. Once the positions is specified,
in Section 3.2, we investigate the existence and uniqueness of the solution of (3.3). It

turns out that this problem is generally ill-posed. We resort to regularization method to
establish an effective coefficient calculator in Section 3.3.
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3.1 Constructing the shape of the stencil on the composite grid by pre-selection
area

It is a seemingly easy yet non-trivial task to find a set of candidate cells located at {J;},
that is suitable to approximate the Laplacian at a certain position, especially for high or-
der approximation in the composite grid environment. This point selection process for
a lower (e.g. second) order discretization is relatively easy, for the number of possible
stencil configurations is dramatically smaller than it is the high order case. Increment-
ing the dimensionality greatly increases the complexity as well. An additional difficulty
comes from the possible complexity caused by the structure of the grid. In fact, there is
no general principle for this cell selection process.

Suppose we are constructing the stencil at xo which is a level ¢ cell. First, we generate a
pre-selection area of selection radius r, which is defined by the union of a set of d-dimensional
hypercubes whose centers are located at {xo+w;h,}, where w; runs over the set

{w: |lwl1 <r,w; GZ},

and whose edge lengths are of h,.

The key step is to find out the corresponding cells on the composite grid hierarchy for
each hypercube in the pre-selection area. Results are saved in an output list. Note that
special attentions should be paid according to boundary conditions. For each hypercube,
the possible situations are listed below.

Case 1. The hypercube is covered by level ¢ or a coarser level. In this case, we only need
to append the hypercube or coarser cell into the output list.

Case 2. A finer level of grid is covering the hypercube. We use a recursive approach to
append information to the output list by sub-dividing the cell into 2 patches.

Case 3. If the hypercube is outside the DOF region, there could be two possibilities.

(@) The hypercube is contains the cells that could be defined by Dirichlet bound-
ary condition: we need to append the cell into the list (and discard the re-
dundant ones if necessary).

(b) The hypercube is outside the DOF region, but the periodic boundary condi-
tion will pull the hypercube back into the DOF region. In this case, Case 1
and Case 2 are applied.

We present some examples of the pre-selection area with differential boundary con-
ditions. Figs. 5(a) and 5(b) are for Dirichlet boundary condition, while Figs. 6(a), and 6(b)
are for periodic ones. The left figures show the pre-selection area in geometrically and
the right ones, theoretically.
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(a) Geometrical plot (b) Theoretical plot

Figure 5: Sample pre-selection result. Radius is set as 4 and the boundary condition is set as Dirichlet.

(a) Geometrical plot (b) Theoretical plot

Figure 6: Sample pre-selection result. Radius is set as 4 and the boundary condition is set as Dirichlet.

3.2 Existence and uniqueness of (3.3)

In the last subsection, we discuss the strategy to choose cells from a composite grid by
pre-selection area. However, one important issue is that it is not obvious that enlargement
of selection radius r will ensure the existence of a solution w that satisfies (3.3), especially
under complex composite grid setting.

The existence of the stencil is related with the selection radius. Obviously, the larger
the radius, the more degrees of freedom we have in the construction of a stencil. How-
ever, it is not entirely determined by the selection radius r, it could also depend on the
specific structure of the local grid(s). Consider a two dimensional fourth order sten-
cil construction with pre-selection radius equals to 2, but with two different grid set-
tings shown in Fig. 7. In the first setting shown in Fig. 7(a) which is a two dimensional
fourth order stencil construction problem. There exists a unique stencil, for the reason
that rank(A) =rank ([A b]) =13. However, under Setting 2 in Fig. 7(b), we have, the
rank of coefficient matrix A is 16 and the rank of augmented matrix is 17. Hence there is
no possible solution.
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(a) Setting 1 (b) Setting 2

Figure 7: Different settings of initial candidate cells selected by a pre-selection area of radius 2.

The following theorem ensures that the increment of r will sure to breakdown under
a mild restrictions on the structure of the composite grid hierarchy:.

Theorem 3.1. For any accuracy requirement m and any d-dimensional cell-centered composite
grid hierarchy, generated by the modified point clustering algorithm with minimal length larger
than m+-2 and buffer zone length larger than 1, and given a cell is on level £. Then, for selection
radius

r>2% (m+2),

there exists a w that satisfies (3.3).

Proof. Tt is enough to prove that, for any dimension i € {1,---,d}, there exists an index
J c{1,---,N} such that

1 02
2 Zw]-u(xj):—a—xzu(xo)%—(’)(hmﬂ). (3.4)

jer i
By the minimal length restriction, the existence of buffer zone length and the theory of
polynomial interpolation, there exists a index set J; C {1,---,N}, such that for each xp+

khoe;, we have
u(xo+khoe)) =Y p](k>u(xj)+0(hm+l), (3.5)
i€k

where { p](-k)} are the coefficients of interpolation. Furthermore, it is well known that for
m+-2 distinct points, there exists a m-th order finite difference scheme that approximates
the Laplace operator. The worst case is that m+-2 points are all located at one size of xo.
Hence for r>2°-(m+2), the stencil could be constructed by polynomial interpolation. []

Remark 3.1. Theorem 3.1 ensures that there exists w such that when given large enough
pre-selection area, Eq. (3.3) holds.
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Uniqueness of (3.3) is generally not guaranteed. In fact, we have the following propo-
sition.

Proposition 3.1. Matrix A in (3.3) may not necessarily have full column rank, even if A is
a tall or square matrix, that is M < N. Hence the stencil generation problem could be an
ill-posed problem.

Proof. The proof is constructive. Consider a d=2 dimensional stencil generation problem
with the standard long central difference points, i.e., {x;} ={(n1,n2) 111 € [-2,2]NZ,n, =
0}U{(n1,n2):n2€[—2,2]NZ,n1 =0} and the accuracy requirement is 2. The matrix A takes
the form

111 1 1 11 1 1]
001 0 -102 0 -2
010 -1 0 20 -2 0
oo+ 0o 12 02 0 2
A_|000 0 0 00 0 0
0o+0 4 0 20 2 0
00¢: 0 -203 0 -3
000 0 0 0O0 0 O
000 0 0 00 0 O
0 ¢ 0 —¢ 0 50 -3 0,
with rank(A) =7. O

Remark 3.2. Proposition 3.1 implies that uniqueness of (3.3) is generally not guaran-
teed. This could also be understood intuitively, since if we are given too many candidate
points, it is possible to construct different stencils while preserving the required accu-
racy. In order to solve this problem, we rely on some regularization techniques in the
next subsection.

3.3 Effective coefficients via regularization

As is discussed in the last subsection, when pre-selection area is large enough, the prob-
lem becomes under-determined. A common treatment for such ill-posed problems is
utilizing the regularization techniques. However, the choice of optimization function is
not unique. Hence, the first trial is the standard Tikhonov regularization.

(P1) Tikhonov regularized stencil generation problem

min|| Tw||2, s.t. Aw=D, (3.6)
w

where T is the Tikhonov matrix, and a simple usual choice is the identity matrix. Eq. (3.6)
can be directly transformed into a linear system of equations by introducing a Lagrange
multiplier.
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(P1) Explicit solution to Tikhonov regularized stencil generation problem

2T'T AT| [w] _[0

ol [B)-B) 67
This symmetric linear system can be solved directly by using a DSYSV routine in LAPACK
[1]. In this way, we are able to construct the stencil for any cell on the composite grid for

any order, provided enough grid points are available, by solving (P1) or (P1). Note that
in the process of solving, we essentially find a solution with the minimal TT T-norm.

Remark 3.3. This regularization technique could be applied to the uniform grid as well.
We observe that in 2D and 3D case, for radius of pre-selection area small 7 (from 1 to
10), solving this problem will result in a 2r order standard long finite difference scheme.
However, this is not generally true for arbitrary r.

To motivate our implementation, we use examples to illustrate our modifications on
this problem. The first observation is that if T =1, the enlarged linear system may be ill-
conditioned. For example, if we present a walk list on a uniform grid with walk radius
3, the condition number in (3.7) equals to 6.0577 x 10734, which indicates a severally ill-
conditioned problem. The solution of (3.7) results in a stencil with absolutely no accuracy.
One way to overcome this difficulty is to change to another Tikhonov regularization ma-
trix. In our implementation, we choose T =1—Ey;. Then we arrive at the second version
of the regularized problem:

(P2) Second version of reqularized problem

min|| Tw||2, s.t. Aw=D, (3.8)
w

where E11 = e1e¥ is the elementary matrix with a one entry on (1,1)-position. The motiva-
tion for this choice is that the solution of (P2) is equivalent to minimizing the off-diagonal
part of energy in the stencils. Again, Eq. (3.8) could be transformed into a linear system
of equations

(P2) Explicit solution to second version of stencil generation problem

ol &

After solving (3.9), we recover three dimensional long scheme, that is a direct sum of
three one dimensional sixth order stencils in three directions as expected.

The second observation is that we could end up with a lot of different stencils for a
single cell (or grid point) with the same order of local truncation error. Suppose we are
given a stencil of accuracy order m, then the local truncation error is of (’)(hm“), or more
specifically, Cm1h™T1, and there is no constrains for this constant C,,,,1.
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10 10

Figure 8: To show how to reduce the constant before the local truncation error, we use these positions as a
test problem. This is a commonly used stencil that could be used at the edge.

We compare two special cases that will be frequently used in the composite grid de-
composition. The local truncation error for a standard sixth order long scheme central
difference scheme in three dimensions has the following form:

Re=8u(0)— = (= Ly u(23e) 2 Y u(22e) 2y u(ren)+ 2u(0)
o 2\ 904 V20~ VY AT
1 3
=Y u)(0)n®+-O(1®). 1
560;14 (01 +O () (3.10)
If we pipe the sixth order terms into a vector, the I>-norm of this vector is v/3/560~0.0031.
Another point stencil is shown in Fig. 8. If we solve (P0) with accuracy requirement set
to 5 and do the same pipe-vector procedure, the resulting norm is 19.2773, which is 6,219
times that of the sixth order one. The norm for (P2) is 0.8321, which is 268 times larger.
Hence, we propose a third strategy by adding a penalty term on the local truncation error
in the optimization problem.

(P3) Penalized stencil generation problem
min||Tw|3+[Annwlf, st Aw=b, (3.11)

where m is the order of accuracy requirement. The last term is exactly the squared pipe-
vector norm, since b, 1 =0. Again, we present the Euler-Lagrange version of (3.11).
(P3) Penalized stencil generation problem
2TIT+2AT Ani1 AT] [w] [0
A O] |[A b|’
After solving (P3), we have that the vector norm is 0.0543, which is about 15 times smaller
than the one in the case of (P2).
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3.4 Repository

In the previous subsection, we were able to compute the stencil by an automatic proce-
dure with satisfactory results. However, the procedure of solving saddle point problems
for each cell at grid interfaces could produce considerable overhead, for one may have to
solve an optimization problem or a linear system of equations for each cell on the inter-
face. In the sixth order setting, the usual size of each stencil problem is in the order of a
few hundreds. To overcome this situation, we proposed to establish a pre-defined stencil
repository before entering the solver. Intuitively speaking, if the stencil is found in the
repository, then the coefficients are directly assigned to the grid points without solving
any optimization problem.

Since the number of interface points is usually an order of magnitude lower than the
number of regular points, it is enough to impose fifth order stencils at the interface. In
our implementation, we preset 5701 stencils with fifth order accuracy and 1 stencil that is
of sixth order. The idea of the construction of the preset stencil repository is to enumerate
some of the two-level situations, i.e., all grid points at the same level, with coarser cells or
with finer cells. Also, with the aid of “direction of the stencil” for the latter two situations,
better matching stencil performance is acquired. Once the locations are specified, one
needs to carry out the calculation of the coefficients as discussed in Section 3.3. We will
discuss the effectiveness of solving the different optimization problems.

To close this subsection, we summarize an illustration in Table 2 to show the effective-
ness of our current version of the stencil repository. Our test platform is a Mac OS X 10.9
system with Intel(R) Core(TM) i7-2720QM CPU @ 2.20GHz. As we can see in Table 2, the
speed of search repository will actually double the performance for the whole process.

Table 2: Effectiveness of stencil repository in Example 4.1.

Strategy Search Compute  Total
Compute only (s) 0.00 41949 419.49
Compute only (pts.) 0 28,476 28,476
Speed (pts./s) N/A 67.88 67.88
Search + Compute (s) 13.92 187.20 201.12
Search + Compute (pts.) 18,320 10,156 28,476
Speed (pts./s) 1,316.09 54.25 141.22

4 Numerical experiments

In this section, we report some numerical experiments to illustrate the effectiveness and
efficiency of the proposed methods.

Example 4.1 (One Gaussian at center of domain). In our first test problem, we consider
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the problem
{ —Au(x)+p(xu(x)=f(x), x€Q, (4.1)

u(x) =up(x), x€0Q.

which is motivated by the linearized Poisson-Boltzmann equation (LPBE) after the change-
of-variable technique in [11]. One can check that the analytical functions

a(x) =exp(—|Ix|3),
p(x)=xll3+1,
fx)=(7=3lIx3)exp(~IIxl3),

satisfy (4.1). We solve the problem on Q=[—1,1]% and impose Dirichlet boundary condi-
tions. Naturally we define u;(x) =u,(x) on the boundary. We want to solve this equation
to sixth order accuracy.

To check the scaling behavior, we use different mesh lengths to test the discretization
strategies. Notice that our machine accuracy is e = O(107'¢) and we hope O(h®) could
be accurately expressed. Hence, the finest mesh lengths are restricted to the range 0.05
to 0.025, that is the finest mesh of grid points is chosen using 403, 50%, 60°, and 70° grid
points for a domain length of 2 in this case. We name the cases Test 1.1 to 1.4. We fix
the buffer zone length to 3. We keep track of the following quantities: The error in the
discrete L? norm to measure the accuracy, the CPU time required to set the interfaces,
the CPU time required to solve using a direct method to measure the performance, and
the number of non-zeros in the discrete operators to measure the memory requirement.
Table 3 shows the resulting discretization details.

Table 3: Summary of discretization for Example 4.1.

Items Test1.1 Test1.2 Test1l.3 Testl4
Finest grid size 40° 50° 603 703
HFinest 0.051282 0.040816 0.033898 0.028986
# of DOF 22238 54648 109558 192968
# of DOF (uniform) 54872 110592 195112 314432
# of Gp interface cells 4662 7992 12222 17352
# of G, interface cells 9576 19656 33336 50616
# of Gy interior cells 0 0 0 0
# of G, interior cells 8000 27000 64000 125000
% of interface cells 64.03% 50.59%  4158%  35.22%
% of interior cells 3597% 4941% 58.42%  64.78 %

We compared the following four strategies for determining the required stencils:

a. Solving (P2).
b. Solving (P3).
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c. Searching the pre-defined stencil repository, coupled with the solution of problem
(P2).

d. Searching the pre-defined stencil repository, coupled with the solution of problem
(P3).

The resulting data for each one of these strategies are shown in Table 4.

Table 4: Data of Example 4.1

Items Test 1.1a Test 1.2a Test 1.3a Test 1.4a
# of non-zeros of A 3391524 6959379 12007475 18593900
[ug —ue||n 823x1077 1.75x1077 297x107% 8.08x10~°
CPU time for G; Interface (s) 164.61 294.82 476.00 665.05
CPU time for G, Interface (s) 350.75 690.81 1167.69 1773.56
Cs(= |[ta — e || X hp2 o) 2.32 1.55 0.66 0.39
Co(= |lua—te||n X g oy) 45.23 37.90 19.57 13.62
CPU time for solving Ae=r (s) 23.29 172.66 546.87 2388.96
Items Test 1.1b Test 1.2b Test 1.3b Test 1.4b
# of non-zeros of A 3389526 6958396 11975966 18556896
[ug—ue|/n 557x1077  1.10x1077 2.69x10~8% 7.91x107°
CPU time for Gp Interface (s) 266.52 472.26 752.59 1064.21
CPU time for G, Interface (s) 534.09 1056.34 1806.82 2676.70
Cs(= |[ta —te || X hp2 o) 1.57 0.98 0.60 0.39
Co(= ||ta—te||n X g osy) 30.63 23.90 17.73 13.34
CPU time for solving Ae=r (s) 22.22 148.32 552.05 2055.83
Items Test 1.1c Test 1.2¢ Test 1.3c Test 1.4c
# of non-zeros of A 1825934 3642397 6234235 9737620
[ug—ue||n 3.79x107% 4.23x1077 6.81x107% 1.53x1078
CPU time for Gp Interface (s) 167.25 299.82 477.53 675.26
CPU time for G, Interface (s) 71.62 101.63 132.38 165.44
Cs(= |[ta — e[| X Fp2 o) 10.68 3.74 1.52 0.75
Co(= ||ta—te||n X g osy) 208.16 91.58 44.87 25.78
CPU time for solving Ae=r (s) 57.39 306.97 621.25 1710.70
Items Test 1.1d Test 1.2d Test 1.3d Test 1.4d
# of non-zeros of A 1803570 3607000 6200330 9698220
[ug—ue||n 3.88x107% 4.32x1077 6.92x107% 1.54x1078
CPU time for G; Interface (s) 265.98 480.20 753.80 1093.06
CPU time for G, Interface (s) 106.85 153.05 199.59 248.24
Cs(= |[ta — e[| X hp2 o) 10.94 3.81 1.55 0.75
Co(= |[ua—tte ||y X g o) 213.35 93.46 45.63 25.90
CPU time for solving Ae=r (s) 21.69 132.60 555.57 1725.21
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Remark 4.1. In terms of accuracy, solely solving either optimization problem (P2) or (P3)
seems to be the optimal choice. Accuracies are almost the same, although (P3) slightly
outperforms (P2). All these strategies result in a good order of accuracy, with a numerical
scaling around 8-th order. (see Fig. 9(a)). However, as expected, these two strategies are
more time consuming. An initial repository search step speeds up the stencil creation
process (see Fig. 9(c)). It will also reduce the number of nonzero terms in the discrete
operator (see Fig. 9(b)), at the cost of a small sacrifice in the accuracy (again, see Fig. 9(a)).
This, however, only seems to affect the pre-factor in the error, and not the scaling.

10 N :
A +
. &
g .
T"; 107k A + |
£
3
= Q ' Pure solve P2
I a + Pure solve P3
10 o = Search + Solve P2
4 Search + Solve P3
slope =8
-9
10 : :
10—1.6 10—1.4 10—1.2

(a) Absolute error in discrete L? norm for analytic setting

1. Scaling is approaching 8.

ElINFinest = 40
[EEINFinest = 60
1.8¢ [CINFinest = 70
[ INFinest = 80

o
Pure Solve P2 Pure Solve P3__ Search+Solve P2 Search+Solve P3
Strategies

(b) Nonzero number in discrete Laplace op-
erator.
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Example 4.2 (Ten Gaussians). We consider now a more complex example (see Fig. 10):

1 e 1 e
M(X)—G<§€2,§,4>+G<—592,§,4>

e
( 2(e1+e3 +dlez,3,

(dz e;—eq)+diey,=,2

( ) e —93)+d162,§,2) ,

( ) —e —93)+d162,§,2) ,
(dz (e1+e3)—diey, -
+G (dz(e3—e1)
p(x)=81r>4-81,

where d; =z 1y \1[ dr= ﬁ and s:=x7 +xp+x3. We assume the convention that e:=(1,1,1).

Function G is the three dimensional Gaussian-like function defined by

3

G(x,0,A):=A -Hg(xi,(rz-,l),
i=1

. (x—x0)*
Q(x0,0,A):=A-exp <_T )

Problem is defined on a cuboid domain Q:=[—121 161 1211, (12l 16 1211 \yith finest
mesh 122 x 162 x 122. The contour plot of the right hand side can be seen in Fig. 10. A full
discretization requires the solution of a linear system of order 120 x 160 x 120 =2,304,000.
We plot the CPU time corresponding to Example 4.1 in Fig. 11 and extrapolate the CPU
time for the case where a full finest grid is imposed on the whole domain. We observe
that for each case, the predicted CPU time is about the same. The minimal predicted CPU
time is about 1.44660 x 10° seconds = 1.67 days.

Next, we evaluate the performance of the discretization using a composite mesh. We

tested the effect of the buffer zone length in three situations by setting this length in the

(@) (1,4) (b) (2,5 (© (3,6)

Figure 10: Three dimensional contour plot f(x)=0.3 and composite grids for Example 4.2.
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Figure 11: CPU time for Example 4.1 and its prediction for uniform finest problem in Example 4.2.

range 1—3; we also ranged the minimal patch length from 4 to 6. The resulting composite
grid is shown in Fig. 10 and their statistics are shown in Table 5. Our test is based on
Discretization 3. The resulting discrete L?-norm of error is |[u—u,||, =2.733384x10°.
And the CPU time cost is about 5.02120 x 10* seconds.

Table 5: Statistics for Example 4.2.

Mpfzone Mminlen fmax Tgrids Minterface CPU Time (sec) Speed (sec/cell)
1 4 3 390 599,936 29,996.8 0.05
2 5 3 222 397,661 19,883.1 0.05
3 6 3 90 289,354 15,081.8 0.052

5 Concluding remarks

We discussed the problems for high order finite difference discretization on composite
grids. A modification on the traditional point clustering algorithm with adjustable pa-
rameters was introduced. We proved the effectiveness of these parameters in reducing
CPU time by numerical experiments.

We also explained the difficulties in selecting the DOFs in a stencil. To compute the
coefficients in the stencil, a special Tikhonov regularization technique was applied, trans-
forming the optimization problem into a saddle point problem. Moreover, a stencil repos-
itory was designed to speed up the discretization process.

To evaluate the performance of this discretization, we tested the algorithm on a sec-
ond order elliptic problem. Both order of accuracy and CPU time agreed with our expec-
tations.
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