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Abstract. The high order inverse Lax-Wendroff (ILW) procedure is extended to bound-
ary treatment involving complex geometries on a Cartesian mesh. Our method ensures
that the numerical resolution at the vicinity of the boundary and the inner domain
keeps the fifth order accuracy for the system of the reactive Euler equations with the
two-step reaction model. Shock wave propagation in a tube with an array of rectangu-
lar grooves is first numerically simulated by combining a fifth order weighted essen-
tially non-oscillatory (WENO) scheme and the ILW boundary treatment. Compared
with the experimental results, the ILW treatment accurately captures the evolution of
shock wave during the interactions of the shock waves with the complex obstacles.
Excellent agreement between our numerical results and the experimental ones further
demonstrates the reliability and accuracy of the ILW treatment. Compared with the
immersed boundary method (IBM), it is clear that the influence on pressure peaks in
the reflected zone is obviously bigger than that in the diffracted zone. Furthermore,
we also simulate the propagation process of detonation wave in a tube with three dif-
ferent widths of wall-mounted rectangular obstacles located on the lower wall. It is
shown that the shock pressure along a horizontal line near the rectangular obstacles
gradually decreases, and the detonation cellular size become large and irregular with
the decrease of the obstacle width.
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1 Introduction

Studies of the propagating detonation wave in a tube with complex boundaries are an
important research field for not only fundamental sciences, but also engineering appli-
cations, which usually requires numerical simulations be carried out for the intricate ge-
ometries intersecting the Cartesian meshes in an arbitrary fashion. Even though a high
order numerical scheme in the internal computational domain is adopted, most of bound-
ary treatments based on the Cartesian grids are not more than the second order accuracy
in the vicinity of the complex boundaries. The numerical error caused by a traditional
and low order boundary treatment may pollute the results of the internal computational
domain. Recently, some successful boundary treatment techniques based on the Carte-
sian grids are proposed and developed. The reflection technique [1] is a very simple and
popular boundary treatment method, in which all physical variables are reflected sym-
metrically on the rigid wall except for the anti-symmetric normal velocity. This method
works well when the rigid boundary is straight and positioned at half points. However,
large errors might be caused when such method is applied to complex boundary [2].
Later, the IBM first proposed by Peskin [3] has been numerously modified and refined
to deal with both incompressible flows and compressible flows including strong shock
waves. Sjögreen et al. [4] developed an embedded boundary finite difference technique
with the second order accuracy for solving multi-dimensional Euler equations. To avoid
numerical oscillations near shock waves, a slope limiter was adopted on complex bound-
ary. Chaudhuri et al. [5] described the implementation of IBM and then applied it in
conjunction with a fifth order classical WENO scheme to simulate the complex fluid-
solid interactions. The simplified and modified ghost point treatments were introduced
by Farooq et al. [6] for solving two dimensional compressible Euler equations based on
Cartesian grids. Their methods were second order accurate near boundaries. Tan and
Shu [7] developed a high order numerical boundary treatment, consisting of the inverse
Lax-Wendroff type procedure for inflow boundary conditions and extrapolation for out-
flow boundary conditions, to solve hyperbolic conservation laws with finite difference
methods. However, the algebra of the ILW procedure depended on partial difference
equations (PDEs) was very heavy for practical applications. In [8], the boundary treat-
ment proposed by Tan et al. [7] was further simplified and improved for efficient imple-
mentation in practice. This innovative boundary treatment procedure was demonstrated
on the scheme with fifth order accuracy which was the same order as the internal WENO
scheme. Vilar and Shu [9] generalized the ILW treatment for the inflow boundary of a
linear hyperbolic problem and analyzed the stability of the resulting schemes.

The mechanism of detonation wave propagation in complex tubes was studied widely
by many researchers, which is of great importance to industrial safety. Up to now, some
experimental and numerical results are available. The experiment on gaseous detona-
tion diffraction in a 90 degrees branched channel was investigated by the work of Guo
et al. [10]. Starr et al. [11] performed studies on detonation limits in rough tubes. It was
concluded that detonation limits in rough tubes were wider than that in smooth tubes.
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Zhu et al. [12] experimentally investigated the effect of turning on explosion propagation
in single bend, U-shaped and Z-shaped pipe, respectively. Zhang et al. [13] experimen-
tally investigated the effect of branch tunnels on explosion propagation in five different
tunnels. Frolov et al. [14] reported results of studies on initiation, propagation, and sta-
bility of gaseous detonation in U-shaped tubes by extensive experiments and numerical
simulations. Hou et al. [15] built a mathematical model for explosion wave propagation
in turn roadway. The numerical results showed that pressure, velocity and temperature
are gradually attenuated during its propagation. Wang et al. [16] carried out a numeri-
cal simulation to investigate the effect of the obstacles on the explosion of the premixed
gas by combining fifth order WENO scheme and two-step reaction model. Li et al. [17]
numerically investigated the formation mechanism of cellular detonation propagating
through pipe bends by a detailed reaction model. These simulations show that boundary
treatment is very critical to investigation on both the detonation reflection near the rigid
wall and detonation cellular size.

In this paper, the ILW boundary treatment with fifth order accuracy first was ex-
tended to the reactive Euler system with a two-step reaction model. Combining a fifth
order LF-WENO scheme, a high order parallel code was developed to investigate the in-
teractions of shock/detonation waves with the complex rigid boundaries of geometries
and avoided effectively the nonphysical results in the simulations that are very sensitive
to the boundary numerical treatment method. We further demonstrated and validated
the efficient implementations of the ILW treatment by comparing the experimental re-
sults.

The remainder of this paper is organized as follows. Some non-dimensional param-
eters as well as governing equations are given in Section 2. Then we focus on the issue
of extending fifth order ILW treatment to 2D two-step reactive Euler equations in Section
3. In Section 4 shock wave propagation through a rough tube with rectangular grooves
is first simulated. Then we numerically investigate detonation wave propagation over a
circular cylinder to compare the pressure histories and its peaks at several locations near
the surface of cylinder utilizing the ILW treatment and IBM respectively for rigid walls.
Finally, the effect of the obstacle width on cellular structure is discussed through inves-
tigating detonation wave propagation in a rough tube. Concluding remarks are given in
Section 5.

2 Governing equations

The governing equations used for investigating detonation wave propagation are the
two-step reactive Euler equations with source terms [18, 19]. The chemical reaction is di-
vided into two stages including the first induction period and the subsequent exothermic
one. In a 2D Cartesian coordinate system, we consider strongly hyperbolic conservation
laws including the two-step chemical reaction by neglecting the effects of viscosity, the
heat diffusion, and body force. We choose three characteristic physical quantities includ-
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ing the induction reaction length (l∗), the heat of reaction per unit mass (q) and the initial
mass density (ρ0). Thus, references for the velocity, the pressure, the temperature, the
energy, and the time can be defined as

u∗=v∗=
√

q, p∗=ρ0q, T∗=q/
⌢

R, E∗=q t∗= l∗/
√

q. (2.1)

So the governing equations can be reduced to non-dimensional forms by using above
references.
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, (2.6)

ωβ=
dβ

dt
=

{

−k2 p2
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β2exp(− E2
T )−(1−β)2exp(− E2+1

T )
)

, α≤0,

0, α>0,
(2.7)

where p, ρ, E, T,
⌢

R, u and v denote non-dimensional pressure, density, total energy, tem-
perature, gas constant and two Cartesian components of the velocity vector, respectively.
The reaction progress parameters α and β are 0<α<1 and β=1 in the induction period,
α≤0 and 0<β<1 in the subsequent exothermic one. E1 and E2 denote activation energy.
k1 and k2 present chemical reaction rate constants. The parameter γ defines the specific
heat ratio. We set E1 = 1.71, E2 = 0.347, k1 = 27.7, k2 = 7.69 and γ= 1.4 in the following
simulations.

The semi-discrete approximation of (2.2) is given by

(

∂U

∂t

)

i,j

=−
1

∆x

(

F̂i+1/2,j− F̂i−1/2,j

)

−
1

∆y

(

Ĝi,j+1/2−Ĝi,j−1/2

)

+φi,j, (2.8)

where F̂i+1/2,j and Ĝi,j+1/2 present the numerical fluxes, which are obtained by a fifth or-
der finite difference WENO scheme with the Lax-Friedrichs splitting [20]. A third order
TVD Runge-Kutta scheme is used to integrate the system of ordinary differential equa-
tions (2.8) in time.
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3 Boundary treatment

The goal of this section is to extend the ILW procedure to the reactive Euler equations
with a two-step reaction model. Assume that the values on the grid points in the interior
of the computational domain have been updated from the previous time level with a
fifth order WENO scheme. For a given ghost point P, a corresponding point P0 on the
complex boundary can be only determined such that the normal at P0 goes through the
ghost point P and points to the interior of the computational domain. Thus we can set
up a local coordinate system at point P0 so that the new x̂-axis and the normal at P0 have
the same direction by

{

x̂= xcosθ+ysinθ,

ŷ=−xsinθ+ycosθ,
(3.1)

where θ denotes the angle between the old x-axis and the normal vector at P0.

Utilizing Eq. (3.1), we can easily convert the reactive Euler equations (2.2) to the new
forms in the local coordinate system as follows

∂Û

∂t
+

∂F(Û)

∂x̂
+

∂G(Û)

∂ŷ
=φ(Û), (3.2)

Û=
[

Û1 Û2 Û3 Û4 Û5 Û6

]T
=[ρ ρû ρv̂ ρE ρα ρβ ]T, (3.3)

{

û=ucosθ+vsinθ,

v̂=−usinθ+vcosθ.
(3.4)

To achieve a fifth order accurate boundary treatment, the values of the ghost point P
can be obtained by the Taylor expansion in the normal direction

(Ûm)P ≈ Û
∗(0)
m + x̂PÛ

∗(1)
m +

x̂2
P

2
Û

∗(2)
m +

x̂3
P

6
Û

∗(3)
m +

x̂4
P

24
Û

∗(4)
m , m=1,··· ,6, (3.5)

where Û
∗(k)
m represent the normal derivative of Ûm at P0 on the complex boundary.

Then we do a local characteristic decomposition for (3.2) to determine the inflow and
outflow boundary conditions and choose a point P1 closest to P0 in the interior domain.
So we define the Jacobian matrix at P0 by

J=
∂F(Û)

∂Û

∣

∣

∣

∣

P1

. (3.6)

Assuming that the six eigenvalues of (3.6) are λ1=û−c, λ2=λ3=λ4=λ5=û and λ6=û+c.
The left characteristic matrix L consisting of a complete set of left eigenvectors of (3.6) is
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given by
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where the sound speed c̃= 1
2

√
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So the local characteristic vector can be obtained by
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Because the main objective of this paper is to investigate the interactions between
detonation waves and the complex rigid boundaries, the physical boundary condition
ûP0

=0 can be used in our simulations. So we can decide the signs of the six eigenvalues
of (3.6), which decides the inflow and outflow boundary conditions.

If variable V̂ is a local conservative characteristic vector, the normal derivatives V̂(k)

(k= 0,··· ,4) at P0 can be achieved by the fifth order WENO type extrapolation [8]. Sub-
stituting the prescribed boundary condition for the sixth equation of (3.8), we get a new
linear system solved for Û∗(0) as follows
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The sixth equation was replaced because the sixth equation corresponds to the inflow
component. Our local coordinate system is defined in such a way that the new x-axis
points to the interior of the computational domain. Therefore, the positive eigenvalue
corresponds to the inflow component.
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Combining the two-step reactive Euler equations (3.2) with the ILW procedure [7, 8],
we can get

(γ−1)

2

Û∗2
3

Û∗2
1

Û
∗(1)
1 +(1−γ)
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3

Û∗
1
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6 = Û∗2

3 /
(

RÛ∗
1

)

, (3.10)

where R is the radius of curvature at P0 on the complex boundary.
From the local flow characteristics, we replace the sixth equation of (3.8) with (3.10).

Thus, the values of Û∗(1) can be solved by the following linear system
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The values of Û∗(k) (k=2,3,4) can be easily achieved by the following extrapolation equa-
tions where the ILW procedure is not needed
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Using the above five linear systems comprising (3.9), (3.11) and (3.12), we can obtain
the values of normal derivatives Û∗(k) (k=0,1,2,3,4). Therefore, the values of the ghost
points can be imposed by the Taylor expansion (3.5) and the rotated coordinate system
(3.4).

4 Numerical simulation

4.1 The validation of the ILW treatment

In our previous paper [8], we have demonstrated that the ILW treatment is a fifth order
accurate boundary treatment, which is the same as order as our interior WENO scheme.
The main goal of this subsection is to demonstrate the validation of the ILW treatment by
comparing our numerical results with the experimental ones. Gongora-Orozco et al. [21]
experimentally investigated the shock wave propagation, which usually involves the
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Figure 1: Computational configuration of shock wave propagation through a rough tube.

complex physical mechanisms such as the shock reflections, diffractions, shock-vortex
interactions and so on. The computational model is shown in Fig. 1, which is the same
as their experimental model. Note that in this particular example, we can easily ap-
ply the standard reflection technique to treat the boundaries of the rectangular grooves.
However, for more complex geometries presented later and straight wall boundary not
located at the center of adjacent grid points, the application of the reflection technique is
not straightforward, while we can successfully apply the ILW treatment.

In the simulation, the computational domain divided by a uniform Cartesian mesh
with mesh size ∆x=∆y=0.02 is 50×12. We set up 15 rectangular grooves on the lower
wall, while the upper wall of the tube is smooth. The width and height of rectangular
grooves are 1 and 3, respectively. The width of rectangular obstacles is 2. The left bound-
ary is inflow condition, the right boundary is outflow condition, and other boundaries
are rigid wall treated by the fifth order ILW treatment. The initial incident shock wave
with a Mach number of Ms = 1.66 is located on the left, and travels downstream to the
right exit of the rough tube.

From Fig. 2, we can see that, when the incident shock wave propagating inside a
rough tube encounters each groove, diffraction and reflection will occur. When arriving
at the exit of the tube, the intricate shock wave patterns behind the incident shock wave
can be seen due to the interactions of shock waves with grooves and other smooth rigid
walls. Fig. 2(a) represents the experimental result captured by the high-speed schlieren
photography technique. Fig. 2(b) shows our numerical result. For comparison between
our numerical result and the experimental one, we divide it into three parts, i.e., zone ZA,
zone ZB and zone ZC, as shown in Fig. 2. Before the incident shock wave exit the test
section, the reflected waves from the smooth upper wall are diffracted continuously by
grooves in zone ZA. Thus the pressure gradient in zone ZA decreases gradually, which
makes the shock wave patterns in zone ZA more ambiguous. We can see from Fig. 2
that zone ZB has very clear shock wave patterns because the reflected contributions from
both the upper wall and rectangular obstacles on the lower wall are stronger than the
diffraction of mounted-wall grooves. The shock wave patterns of zone ZC are more in-
tricate than other parts due to the interactions of the reflected waves from the upper
wall and the rectangular obstacles. Comparing Fig. 2(a) with Fig. 2(b), excellent agree-
ment in the corresponding zones is observed between the numerical and experimental
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(a) Schlieren image obtained by experiment [21]

(b) Schlieren image obtained by the ILW treatment

Figure 2: Experimental and our numerical results of shock wave propagation through a rough tube.

results, which further demonstrates that the ILW treatment can reflect the intrinsic physi-
cal mechanism of the interactions among the incident shock wave, wall-mounted grooves
and the smooth walls.

4.2 The comparison between the ILW treatment and the IBM

To investigate the influences of different orders of boundary treatment techniques on the
internal flow field, we apply the fifth order WENO scheme in the internal computational
domain, and adopt our fifth order ILW treatment and the second order IBM [5] to treat all
rigid walls, respectively. Five transducers near the surface of circular cylinder are located
as shown in Fig. 3 to monitor the pressure history of propagating detonation waves.

Figure 3: Computational configuration of detonation wave propagation over a circular cylinder in a tube.
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A computational domain divided by a uniform Cartesian mesh with mesh size ∆x=
∆y = 0.017 is 20×10 as shown in Fig. 3. A circular cylinder with the radius of R = 2.5
is located at (10,5). The tube is filled with a stoichiometric hydrogen-oxygen mixture.
The non-dimensional initial state is (ρ,u,v,p,α,β) = (1,0,0,0.16,1,1). The left boundary
is inflow condition, and the right boundary is outflow condition. The upper and low
boundaries and the surface of cylinder are assumed to be rigid walls treated by the ILW
treatment and IBM, respectively. A Zeldovich, Von Neumann and Doering (ZND) profile
is initially located at the entrance as the inflow boundary condition. See [22, 23] for more
details about the ZND profile. The outlet adopts the free outflow boundary condition.

Fig. 4 represents the pressure histories of the different monitoring locations near the
surface of the circular cylinder. From Fig. 4(a), it can be seen that the first pressure peak
occurs at time 4.1, which indicates that normal reflection happens at point A. Then det-
onation wave collides with the surface of the cylinder at point B and is reflected at time
4.8. The corresponding pressure peak of point B occurs as shown in Fig. 4(b). The re-
flected wave travels in the opposite direction and then arrives and reflects again at the
upper rigid wall, which makes pressure increase slightly after time 12.4 elapse at point
B. When detonation front passes over point C, diffraction occurs as shown in Fig. 4(c).
Fig. 4(d) shows that the magnitude of pressure at point D increases to 0.75, and then the
second pressure peak appears due to the reflected wave from the upper rigid wall. How-
ever, pressure will be reduced dramatically by rarefaction effect at point D. Diffracted
waves propagate from the top and the bottom to the center of the tube at the same time,
and then collide with each other, which makes a transient pressure increase. Due to the
contribution of rarefaction waves at point E, the shock pressure drops down in a short
time as shown in Fig. 4(e). Next we compare the differences of pressure histories at five
points to analyze the influences on the internal flow field under the different boundary
treatment techniques. At point A, the pressure peak (5.74) obtained by the ILW treatment
is obviously lower than IBM (7.88), as shown in Fig. 4(a). On the contrary, the pressure
peak (4.37) obtained by our numerical boundary treatment is apparently higher than IBM
(3.53) at point B, as shown in Fig. 4(b). However, the rest of points almost have the same
pressure histories, i.e., pressure peaks obtained by the ILW treatment are almost the same
as that by IBM at these points. From what has been discussed above, it can be concluded
that different orders of boundary treatment techniques doubtlessly have a major impact
on the internal flow characteristics such as pressure; the influence on pressure peaks in
the reflected zone is obviously bigger than that in the diffracted zone. Thus we use the
fifth order ILW procedure rather than lower order boundary treatments to treat all rigid
walls to avoid polluting the numerical results in the following simulations.

4.3 Implementation of the ILW treatment in detonation

In this section, we are of great interest to implement the high order ILW procedure to
investigate the interactions between detonation waves and complex obstacles.
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(a) The pressure history of monitoring point A (b) The pressure history of monitoring point B

(c) The pressure history of monitoring point C (d) The pressure history of monitoring point D

(e) The pressure history of monitoring point E

Figure 4: The pressure histories of monitoring point A-E: red solid line represents the pressure histories obtained
by the ILW treatment; green dotted line represents the pressure histories obtained by the IBM.

4.3.1 Detonation wave propagation over a triangular prism

This example investigates detonation wave propagation over a triangular prism inside a
tube. The computational domain divided by a uniform Cartesian mesh with mesh size
∆x=∆y=0.017 is 20×8 as shown in Fig. 5. Three apices of the triangular prism embed-
ded in a tube are (0,0), (3.4,1.9) and (3.4,−1.9), respectively. The initial and boundary
conditions are the same as Subsection 4.2. The high order ILW treatment are also used
for all rigid walls including the surface of the triangular prism.

Fig. 6(a) shows that detonation wave first collides and reflects at the apex of a tri-
angular prism at time 0.92. The local high temperature and high pressure zone occurs,
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Figure 5: Computational configuration of detonation wave propagation over a triangular prism in a tube.

leading to much chemical energy, which endlessly promotes detonation wave propaga-
tion. It can be seen from Fig. 6(b) that Mach stems form due to the reflection of detonation
front on the upper and lower surfaces of the prism. Diffraction occurs when detonation
front arrives at the upper and low apices of the prism as shown in Fig. 6(c). At time
1.62, low pressure zones located at the posterior of the prism are obviously observed.
The reflected waves collide with the upper and lower rigid wall and are reflected again.
At time 2.28, the collision of diffracted waves cause a local high temperature and high
pressure zone igniting the combustible gas. Subsequently, the pressure at the back of the
prism decreases dramatically due to the contribution of rarefaction waves, and the low
pressure zone enlarges over time. It can be seen from Fig. 6(f) that two small vortexes
move forward along the horizontal direction at upper and lower apices of prism, and a
large low pressure zone also appears at the back of the prism.

4.3.2 Influences of rectangular obstacles with different widths on detonation wave
propagation

The computational models similar to Subsection 4.1 are adopted to investigate the in-
fluences of different width of rectangular obstacles on propagating detonation wave in
the following simulations. The whole non-dimensional computational domain is 132×32
and divided by a uniform Cartesian mesh with ∆x=∆y=0.02. The widths of the obsta-
cles for three cases are 5 (case 1), 2.5 (case 2) and 0.75 (case 3), respectively. We set up
15, 22 and 43 rectangular grooves on the lower wall for the respective case 1, case 2 and
case3, with the same left wall locations of the first grooves on the left for three cases. The
initial conditions for investigating detonation wave propagation are identical to those in
Subsection 4.2. The left and right boundaries are described as the inflow and outflow
conditions, respectively. Other boundaries are assumed to be rigid walls treated by the
fifth order ILW treatment.

In Fig. 7(a), it can be seen that detonation front encounters the first groove on the
lower wall. When detonation wave reaches the left side of the first rectangular obstacle,
the reflected waves will appear as shown in Fig. 7(b). Obviously the first vortex appears
at the left side of the first groove, and the lower part of detonation front curves back-
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(a) t=0.92 (b) t=1.15

(c) t=1.36 (d) t=1.62

(e) t=2.28 (f) t=3.34

Figure 6: Pressure contours of detonation wave propagation over a triangular prism in a tube.

(a) t=2.27 (b) t=3.15 (c) t=6.11 (d) t=6.68

(e) t=8.52 (f) t=9.89 (g) t=30.09 (h) t=43.44

Figure 7: Pressure contours of detonation wave propagation in a tube with grooves.
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ward. As the part of detonation wave travels toward grooves, detonation decays and the
front decouples with reaction zone. There are some obvious triple points on detonation
front when propagating though the tube, which releases a lot of chemical energy making
the curved front on the lower part propagate quickly, as shown in Fig. 7(c). Over time,
diffracted wave arrives at the bottom of the first cavity and is reflected, which causes a
local high temperature and high pressure zone. The unburned gas is re-ignited and then
exhausted in the first groove. The transverse perturbations caused by a series of obstacles
make inhomogeneous flow and energy release inside the detonation front. The cellular
detonations are observed as shown in Fig. 7(e). In Fig. 7(f), a group of triple points forms
at detonation front. Since triple points are destroyed constantly by the obstacles, the
number of triple points decreases as shown in Fig. 7(g), while the triple points become
strong as shown in Fig. 7(h).

Fig. 8 display the pressure of the detonation front at time 43.44. Eight peaks (d1-
d8) appear on the pressure curve, which are the same as the numbers and locations of
Fig. 7(h). Pressure histories at A, B, C, D, E and F for the three different cases are presented
in Fig. 9. It should be noted that the six locations (A-F) mentioned above for the three
cases are (6.25,10), (51.25,10), (96.25,10), (6.25,18.75), (51.25,18.75) and (96.25,18.75),
respectively. At time 3.57, the pressure peak of point A is 1.68, which is the same as point
D, because these monitoring points locate before the first cavity. At time 17.05, the pres-
sure at point A decreases slightly due to the contribution of grooves. The pressure peaks
appear simultaneously at point B and E, and are 1.09 and 1.26 respectively, as shown in
Fig. 9(a). The pressure peak (1.03) at point F appears before point C (1.14). Numerical
results of Case 1 indicate that the pressure at detonation front decreases gradually. In
Fig. 9(b), the pressure peak at point E appears ahead of point B, and they are 1.34 and
1.36, respectively. As time goes on, the pressure peaks of point C and point F occur at
the same time and equal to 1.16 and 1.35, respectively. Comparing the pressure peaks at
six points for case 2, we can conclude that the pressure of detonation front near obstacles
decreases over time; the pressure of detonation front far away from the lower wall first
decreases and then increases. It can be seen from Fig. 9(c) that the monitoring points E

Figure 8: Pressure of detonation front at t=43.44.
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(a) Pressure histories for case 1

(b) Pressure histories for case 2

(c) Pressure histories for case 3

Figure 9: Pressure histories for case 1-3.

and B have the same pressure peak 1.08; the pressure peak (1.19) at point F is a little big-
ger than that at point C (1.01). The evolution of detonation front for case 3 is similar to
case 2. As discussed above, we can find that, with the reduction of the upper width of
rectangular obstacles, the pressure of detonation front increases first and then decreases
in the interior physical domain. Fig. 10 represents the maximum pressure history by
simulating numerically the smoke foil tracks. Comparing Fig. 10(a)-(c), it is clear that
cellular structures become big and irregular with the decrease of the upper width of the
rectangular obstacles.
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(a) Cellular structure for case 1

(b) Cellular structure for case 2

(c) Cellular structure for case 3

Figure 10: Cellular structures for case 1-3.

5 Conclusion

In our simulations, a fifth order ILW boundary procedure is extended to the reactive
Euler equations to construct a high order boundary treatment for complex boundaries.
The conclusions based on our numerical results are as follows:

1. The numerical results using the extended high order ILW procedure agree well with
the experimental ones, which can reflect the intricate interaction laws of detonation
waves with complex obstacles.
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2. Numerical comparison shows that the pressure peaks achieved by the two kinds
of boundary treatments mentioned above have obvious differences in the reflected
zone, while there are no significant distinctions between these boundary treatments
in the rarefaction zone.

3. The further off the rectangular obstacles, the smaller influences will occur for the
internal reactive flow. The pressure of detonation front near rectangular obstacles
decreases gradually as time goes by, while the pressure of detonation front far away
from the lower wall first decreases and then increases. We also find that, with the
reduction of the upper width of obstacles, the magnitude of detonation pressure
increases first and then decreases at the same location in the internal reactive flow,
that is to say, there exists an appropriate width of obstacles making the pressure
peak reach its maximum. The numerical results also indicate that cellular size be-
comes small and regular with the increase of the width of the rectangular obstacles.

Acknowledgments

This research is supported by the National Natural Science Foundation of China under
grants 11325209, 11221202 and 11402137, and the Foundation of State Key Laboratory of
Explosion Science and Technology (Grant No. ZDKT11-01).

References

[1] I. O. Bohachevsky, A direct method for computation of nonequilibrium flows with detached
shock waves, AIAA, 4 (1966), 600-607.

[2] G. Moretti, Importance of boundary conditions in the numerical treatment of hyperbolic
equations, Phys. Fluids, II (1969), 13-20.

[3] C. S. Peskin. Flow patterns around heart values, A numerical method, J. Comput. Phys., 10
(1972), 252-271.
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