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Abstract. Dislocations are line defects in crystalline materials. The Peierls-Nabarro
models are hybrid models that incorporate atomic structure of dislocation core into
continuum framework. In this paper, we present a numerical method for a generalized
Peierls-Nabarro model for curved dislocations, based on the fast multipole method
and the iterative grid redistribution. The fast multipole method enables the calcula-
tion of the long-range elastic interaction within operations that scale linearly with the
total number of grid points. The iterative grid redistribution places more mesh nodes
in the regions around the dislocations than in the rest of the domain, thus increases
the accuracy and efficiency. This numerical scheme improves the available numerical
methods in the literature in which the long-range elastic interactions are calculated
directly from summations in the physical domains; and is more flexible to handle
problems with general boundary conditions compared with the previous FFT based
method which applies only under periodic boundary conditions. Numerical examples
using this method on the core structures of dislocations in Al and Cu and in epitaxial
thin films are presented.

AMS subject classifications: 65R20, 65N50, 74A50, 74G65

Key words: Dislocation, elasticity, Peierls-Nabarro model, iterative grid redistribution, fast mul-
tipole method.

∗Corresponding author. Email addresses: maayzhu@ust.hk (A. Zhu), jincm@lsec.cc.ac.cn (C. Jin),
dgzhao@hust.edu.cn (D. Zhao), maxiang@ust.hk (Y. Xiang), huang@email.unc.edu (J. Huang)

http://www.global-sci.com/ 1282 c©2015 Global-Science Press



A. Zhu et al. / Commun. Comput. Phys., 18 (2015), pp. 1282-1312 1283

1 Introduction

Dislocations are line defects and the primary carriers of plastic deformation in crystalline
materials. In the dislocation theory, the elastic field of a dislocation is very well described
by the continuum linear elasticity theory outside a small region surrounding the dislo-
cation [1]. Inside the small region around the dislocation, which is known as the core
region of the dislocation, the atomic structure is heavily distorted, and the linear elastic-
ity theory gives unphysical singularities in the elastic field. The core region determines
the energy and the mobility of the dislocation, thus its modeling plays important roles in
the dislocation and plasticity theories. The Peierls-Nabarro model [1–3] provides a way
to incorporates atomic features inside the core region into the continuum linear elasticity
theory. More accurate first principles results can also be included in the framework of the
Peierls-Nabarro model [5,10–12,15,17] through the generalized stacking fault energy [4].

In the Peierls-Nabarro model [1–3], the solid is divided by the slip plane of the dislo-
cation into two half-space linear elastic continua, with a disregistry (or misfit) relative to
each other and connected by a nonlinear potential force. The total energy consists of the
elastic energy in the two half-space continua and the misfit energy due to the nonlinear
atomic interaction across the slip plane. The dislocation core profile is determined by
energy minimization. The solution of the Peierls-Nabarro model gives a description for
the dislocation core profile as well as the energy barrier (Peierls energy) and the critical
stress (Peierls stress) for the motion of dislocations. Previously, efforts were made mainly
on straight dislocations [2–15, 17, 19, 20].

Several generalized Peierls-Nabarro models for curved dislocations have been pro-
posed [16, 18, 21–23]. Some recent applications of the Peierls-Nabarro models can be
found, e.g., in [24–29]. The major numerical challenge of such models lies in the cal-
culation of the long-range elastic interaction. In the finite element based model proposed
in [16], this long-range interaction is calculated by direct summation over all the grid
points, which requires O(N2) operations, where N is the total number of grid points [30].
The lattice model presented in [18] also requires O(N2) direct summation for the long-
range interaction of dislocation over the slip plane with N lattice sites. The models
proposed in [21–23] employ the fast Fourier transform method (FFT) for the general-
ized Peierls-Nabarro on a uniform mesh with periodic boundary conditions, thus only
O(N logN) operations are needed for the calculation of this long-range interaction. Al-
though the FFT based generalized Peierls-Nabarro models are quite efficient, they are
limited to periodic boundary conditions which mimic the behavior of dislocations in bulk
of the materials. However, the periodic boundary conditions cannot be used when ma-
terials boundaries are present, for example, when dislocations are in thin films where
traction-free boundary conditions are required on the free surfaces [6, 7].

In this paper, we present an alternative numerical method for the generalized Peierls-
Nabarro model in Ref. [21] based on the fast multipole method (FMM) [33, 34] and the
iterative grid redistribution [35]. This presented numerical method is an improvement of
the available numerical methods in the literature in which the long-range elastic interac-
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tions are calculated directly from summations in the physical domains with O(N2) oper-
ations [7, 10, 13, 15–18], and has the advantage of being more flexible to handle problems
with general boundary conditions especially when materials boundaries are present. In
fact, the FMM enables the calculation of the long-range elastic interaction within O(N)
operations. The iterative grid redistribution places more mesh nodes in the regions
around the dislocations than in the rest of the domain, thus increases the accuracy (with
the same number of grid points) or efficiency (with the same resolution), and this grid
redistribution is also achieved with computational cost of O(N).

We apply the developed numerical method to dislocations in Al (in which disloca-
tions have narrow cores) and Cu (in which dislocations have wide cores) under isotropic
elasticity. We have also presented numerical examples of the core profile of a straight
edge dislocation on the interface of epitaxial thin film and substrate, where the image
stress due to the free surface is not negligible. Generalizations to anisotropic elastic-
ity [21] and dislocations in materials with the effect of image stress due to boundaries [1,
6, 7, 37–39] are being considered and will be presented elsewhere.

The rest of the paper is organized as follows. In Section 2, we review the generalized
Peierls-Nabarro model for curved dislocations. In Section 3, we present our numerical
method for generalized Peierls-Nabarro model of dislocations based on the fast multi-
pole method and iterative grid redistribution. Numerical examples including straight
dislocations and dislocation loops in Al and Cu and a straight edge dislocation on the in-
terface of epitaxial thin film and substrate are presented in Section 4. Derivation of higher
order corrections from the local integrals with singularities in the evaluation of the stress
field is presented in the appendix.

2 The generalized Peierls-Nabarro model

In this section, we review the formulation of the generalized Peierls-Nabarro model for
curved dislocations [21], based on which our numerical method is developed.

In the framework of the Peierls-Nabarro model, the crystal is divided by the slip plane
of the dislocation into two half-spaces. Linear elasticity theory applies in each half-space,
and the two half-spaces are connected by an atomic potential force.

Suppose that the slip plane of the dislocation is located at z=0. In the linear elastic-
ity theory in the half-spaces z> 0 and z< 0, the strain tensor is defined in terms of the
displacement vector (u1,u2,u3):

ǫij =
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

, i, j=1,2,3, (2.1)

and the stress tensor is determined from the strain tensor by the constitutive equations

σij =
3

∑
k,l=1

Cijklǫkl , i, j=1,2,3, (2.2)
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where {Cijkl} is the elastic constant tensor. In an isotropic medium, the constitutive equa-
tions are

σij =2µǫij+
2νµ

1−ν
(ǫ11+ǫ22+ǫ33)δij, i, j=1,2,3, (2.3)

where µ is the shear modulus, ν is the Poisson ratio, and δij=1 if i= j and 0 otherwise. In
addition, the following equilibrium conditions hold without body force:

∇·σ=0. (2.4)

The elastic energy in the two half-space is

Eelastic=
∫

R3

3

∑
i,j=1

1

2
σijǫijdxdydz. (2.5)

Along any loop enclosing a dislocation line, the displacement vector increases by a
constant vector, which is the Burgers vector b of the dislocation. This discontinuity asso-
ciated with the dislocation generates a stress field over the whole medium, which is sin-
gular on the dislocation within the linear elasticity theory. This singularity is not physical
due to the breakdown of the linear elasticity theory insider the core region of the dislo-
cation. In the framework of the Peierls-Nabarro model, the Burgers vector b is assumed
to spread out within the core region in the slip plane, and such spread-out is determined
by the local nonlinear atomic interaction across the slip plane. The energy due to the
nonlinear atomic interaction across the slip plane, referred to as the misfit energy, is

Emisfit=
∫

R2
γ(φ(x,y),ψ(x,y))dxdy, (2.6)

where γ(φ,ψ) is the generalized stacking fault energy [4], defined as the energy increment
per unit area when there is a relative shift of displacement across the slip plane, referred
to as the disregistry:

(φ(x,y),ψ(x,y),0)=(u1(x,y,0+)−u1(x,y,0−),u2(x,y,0+)−u2(x,y,0−),0). (2.7)

The generalized stacking fault energy γ can be obtained from atomistic models or first
principles calculations. It has the minimum value when the disregistry is an integer
multiple of the Burgers vector b, and its local minima correspond to the stacking fault
region (leading to dislocation partial dissociation), see Fig. 1. In the Peierls-Nabarro
model, it is further assumed that u1(x,y,0−) =−u1(x,y,0+), u2(x,y,0−) =−u2(x,y,0+),
and u3(x,y,0−)=u3(x,y,0+).

The equilibrium configuration of the dislocation can be found by minimizing the total
energy

E=Eelastic+Emisfit. (2.8)
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Figure 1: The generalized stacking fault energy γ(φ,ψ). (a) γ(φ,ψ) on Al (111) plane and (b) γ(φ,ψ) on Cu
(111) plane.

Taking variation of the total energy, we have the following equations for the equilibrium
configuration of the dislocation:

∂E

∂φ
=σ13+

∂γ

∂φ
=0,

∂E

∂ψ
=σ23+

∂γ

∂ψ
=0, (2.9)

where σ13 and σ23 are stress components on the slip plane z=0. The solutions φ(x,y),ψ(x,y)
can be found by solving the following evolution equations which minimize the total en-
ergy in the steepest descent direction to the equilibrium state

∂φ

∂t
=−M

(

σ13+
∂γ

∂φ

)

,

∂ψ

∂t
=−M

(

σ23+
∂γ

∂ψ

)

, (2.10)

where M is some positive constant.

Under applied stress (σ
app
13 ,σ

app
23 ), the equilibrium configuration of the dislocation is

determined by minimizing the total energy:

E=Eelastic+Emisfit+
∫

R2
(σ

app
13 φ+σ

app
23 ψ)dxdy. (2.11)

The resulting equations in equilibrium are

σ13+
∂γ

∂φ
+σ

app
13 =0, σ23+

∂γ

∂ψ
+σ

app
23 =0, (2.12)
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and the solution can be found by solving the following evolution equations to the equi-
librium state:

∂φ

∂t
=−M

(

σ13+
∂γ

∂φ
+σ

app
13

)

,

∂ψ

∂t
=−M

(

σ23+
∂γ

∂ψ
+σ

app
23

)

, (2.13)

for some positive constant M.

In this paper, we focus on the case of isotropic elasticity, which gives the following
formulas for the stress components in terms of φ and ψ [1, 21]:

σ13(x,y)=
∫

R2

{

µ

4π

y−y1

[(x−x1)2+(y−y1)2]3/2
φy(x1,y1)

+
µ

4π(1−ν)

x−x1

[(x−x1)2+(y−y1)2]3/2
φx(x1,y1)

+
µν

4π(1−ν)

x−x1

[(x−x1)2+(y−y1)2]3/2
ψy(x1,y1)

}

dx1dy1, (2.14)

and

σ23(x,y)=
∫

R2

{

µν

4π(1−ν)

y−y1

[(x−x1)2+(y−y1)2]3/2
φx(x1,y1)

+
µ

4π

x−x1

[(x−x1)2+(y−y1)2]3/2
ψx(x1,y1)

+
µ

4π(1−ν)

y−y1

[(x−x1)2+(y−y1)2]3/2
ψy(x1,y1)

}

dx1dy1. (2.15)

Note that these stress components depend on the partial derivatives of the disregistry
functions φ and ψ. More precisely, the stress depends on the Nye dislocation density
tensor, which in this case is [21, 31]

{αij}=





φy(x,y)δ(z) ψy(x,y)δ(z) 0
−φx(x,y)δ(z) −ψx(x,y)δ(z) 0

0 0 0



, (2.16)

where δ(z) is the Dirac delta function of the z=0 plane.

In the numerical examples in this paper, we calculate dislocation core structures in
Al and Cu. The metals Al and Cu have the face-centred cubic (fcc) atomic lattice. The
dislocations in an fcc crystal have Burgers vectors b = a

2 < 110 > where a is the lattice
constant, and slip planes of {111} type. Here we choose the x, y, and z coordinate axes in
the directions [1̄10], [1̄1̄2], and [111], respectively. The slip plane z=0 is a (111) plane, and
the Burgers vector is in the x direction: b= a

2 [1̄10]. The length of Burgers vector b=2.86Å
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in Al and b=2.55Å in Cu. The elastic constants are µ=2.65×1010Pa and ν=0.347 in Al,
and µ=5.46×1010Pa and ν=0.324 in Cu. These parameters can be found, e.g. in Ref. [1].

For Al and Cu, the generalized stacking fault energy is [21]:

γ(φ,ψ)= c0+c1

[

cos
2π

b
(φ+ψ/

√
3)+cos

2π

b
(φ−ψ/

√
3)+cos(

4πψ√
3b

)

]

+c2

[

cos
2π

b
(φ+

√
3ψ)+cos

2π

b
(φ−

√
3ψ)+cos

4π

b

]

+c3

[

cos
2π

b
(2φ+2ψ/

√
3)+cos

2π

b
(2φ−2ψ/

√
3)+cos

8πψ√
3b

]

+d1

[

sin
2π

b
(φ−ψ/

√
3)−sin

2π

b
(φ+ψ/

√
3)+sin

4πψ√
3b

]

+d2

[

sin
2π

b
(2φ−2ψ/

√
3)−sin

2π

b
(2φ+2ψ/

√
3)+sin

8πψ√
3b

]

. (2.17)

Here φ is the disregistry in the direction of the Burgers vector b (the x direction) and has
a jump of b across the core region of the dislocation, whereas ψ is the disregistry in the
direction normal to b in the slip plane (the y direction). Roughly speaking, the disregistry
function φ determines the location of the dislocation, and the disregistry function ψ is
associated with the partial dissociation within the dislocation core [1, 21].

In Eq. (2.17), the parameter c0 = −3c1−3c2−3c3. For Al, the coefficients c1 =
−0.0577Jm−2, c2=−0.0048Jm−2, c3=−0.0115Jm−2, d1=0.0424Jm−2, d2=0.0135Jm−2; and
for Cu, c1=−0.1866Jm−2, c2=0, c3=−0.0076Jm−2, d1=−0.32324Jm−2, d2=−0.0042Jm−2.
These values of the coefficients are obtained by fitting available data for the elastic con-
stants in the (111) plane (in an isotropic medium), for the stacking fault energy, for the
unstable stacking fault energy in the < 112 > directions and for the unstable stacking
fault energy in the < 110> directions [1, 15, 21, 32]. The obtained γ(φ,ψ) for Al and Cu
are shown in Fig. 1.

Besides the periodic boundary condition [21], another boundary condition commonly
adopted in the Peierls-Nabarro models in the literature is that the dislocation profile is
spread only within the simulation domain [10, 13, 15–18]. This condition is equivalent to
∇φ=∇ψ = 0 outside the simulation domain, see the Nye dislocation density tensor in
Eq. (2.16). This can be implemented by the Neumann boundary conditions for φ and ψ in
the Peierls-Nabarro model in a finite domain. We will focus on this boundary condition
in this paper. Other boundary conditions can also be easily imposed using our numerical
method presented in the next section.

3 The numerical method

In the formulation of the generalized Peierls-Nabarro model in the previous section, we
solve the evolution equations of φ and ψ in Eq. (2.10) (or (2.13) under the applied stress)
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to equilibrium state, with stress components being calculated using Eq. (2.14) and (2.15)
and the generalized stacking fault energy using Eq. (2.17). In this section, we present
an efficient numerical method to solve these evolution equations. In this method, the
stress components in Eqs. (2.14) and (2.15) are calculated using the fast multipole method
(FMM) [33, 34], and the evolution equations in Eq. (2.10) or (2.13) are solved on an adap-
tive mesh generated by the iterative grid redistribution technique [35].

3.1 Iterative grid redistribution

In the generalized Peierls-Nabarro model, the disregistry functions φ and ψ vary rapidly
within the dislocation core region, and quickly approach constants outside the core.
Based on this property, we use the variation-based grid redistribution method [35, 36]
to generate an adaptive mesh for solving the evolution equations of φ and ψ.

The computational domain (ξ,η) ∈ Ωc is discretized into a uniform mesh, and the
physical domain (x,y) ∈ Ωp is adaptive. There is a one-to-one mapping (the Winslow
mapping) from the physical domain Ωp to the computational domain Ωc:

T : (x,y)−→ (ξ,η),

(φ(x,y),ψ(x,y))−→ (φc(ξ,η),ψc(ξ,η)), (3.1)

where φc(ξ,η)=φ(x(ξ,η),y(ξ,η)) and ψc(ξ,η)=ψ(x(ξ,η),y(ξ,η)). The mapping is deter-
mined by minimizing the energy

E(ξ,η)=
∫

Ωp

1

w
(|∇p ξ|2+|∇p η|2)dxdy, (3.2)

where ∇p (and also ∆p in Eq. (3.3)) denotes the operator with respect to variables (x,y) in
the physical domain, and ω> 0 is a weight function. The weight function w reflects the
features of the solutions, and in the generalized Peierls-Nabarro model, we choose

w(x,y)=
√

1+α|φ(x,y)|+β|∇p φ(x,y)|+γ|∆pφ(x,y)|, (3.3)

where α,β,γ>0 are some constants. With this weight function w, more mesh grid points
over the physical domain are moved into the dislocation core region. We use φ in the
weight function because it is the disregistry in the direction of the Burgers vector and is
able to characterize the dislocation core region.

The mapping that minimizes energy E satisfies the Euler-Lagrange equations

∇p ·
(

1

w
∇p ξ

)

=0,

∇p ·
(

1

w
∇p η

)

=0. (3.4)
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A method to find the solutions of the elliptic equations (3.4) is to solve the gradient flow
equations to equilibrium state

∂ξ

∂τ
−∇p ·

(

1

w
∇p ξ

)

=0,

∂η

∂τ
−∇p ·

(

1

w
∇p η

)

=0, (3.5)

where τ is some artificial time. In actual computation, the dependent and independent
variables in Eq. (3.4) are interchanged, i.e. the following evolution equations over the
computational domain are solved to equilibrium state to obtain the mapping:

xτ =
xξ

J

[

∂

∂ξ

(

x2
η+y2

η

Jw

)

− ∂

∂η

(

xξ xη+yξyη

Jw

)

]

− xη

J

[

∂

∂ξ

(

xξ xη+yξyη

Jw

)

− ∂

∂η

(

x2
ξ+y2

ξ

Jw

)]

yτ =
yξ

J

[

∂

∂ξ

(

x2
η+y2

η

Jw

)

− ∂

∂η

(

xξ xη+yξyη

Jw

)

]

− yη

J

[

∂

∂ξ

(

xξ xη+yξ yη

Jw

)

− ∂

∂η

(

x2
ξ+y2

ξ

Jw

)]

,

(3.6)

where J= xξyη−xηyξ is the Jacobian of the mapping.
We use the iterative grid redistribution method [35] to determine the mapping nu-

merically during the evolution of the disregistry functions φ and ψ. The advantage of
this iterative method is that it is able to achieve precise control of the grid distribution
near regions of large solution variations. The idea of this method is to use the Winslow
mapping iteratively

(x,y) −→ (ξ1,η1) −→ (ξ2,η2) ···
(φ(x,y),ψ(x,y)) −→ (φ1(ξ1,η1),ψ1(ξ1,η1)) −→ (φ2(ξ2,η2),ψ2(ξ2,η2)) ··· .

(3.7)
It has been shown [35] that as k→∞,

(ξk,ηk) → (ξ,η),

(φk(ξk,ηk),ψk(ξk,ηk)) → (φ(x(ξ,η),y(ξ,η)),ψ(x(ξ,η),y(ξ,η))), (3.8)

which gives the desired grid redistribution under the given weight function w.
The algorithm of this iteration process is as follows:

Step 1: Let (ξk,ηk) and (φk(ξk,ηk),ψk(ξk,ηk)) be the mesh and disregistry vector, respectively, after
k iterations.

Step 2: Determine (ξk+1,ηk+1) from (ξk,ηk) and (φk(ξk,ηk),ψk(ξk,ηk)) using Eq. (3.5) (in which
(x,y)=(ξk,ηk) and (ξ,η)=(ξk+1,ηk+1)).

Step 3: Define φk+1(ξk+1,ηk+1) = φk(ξk(ξk+1,ηk+1),ηk(ξk+1,ηk+1)), ψk+1(ξk+1,ηk+1) =

ψk(ξk(ξk+1,ηk+1),ηk(ξk+1,ηk+1)), and x(ξk+1,ηk+1) = x(ξk(ξk+1,ηk+1),ηk(ξk+1,ηk+1)),

y(ξk+1,ηk+1)=y(ξk(ξk+1,ηk+1),ηk(ξk+1,ηk+1)). Go to Step 1.
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The iteration stops when |∇cφ|<TOL.
We use Dirichlet boundary conditions for the moving mesh equations, in which the

redistributed mesh remains uniform on the domain boundaries, following Ref. [35].

3.2 Numerical discretization of PDEs and calculation of stress using FMM

We solve the evolution equations of φ and ψ in Eq. (2.13) on a rectangular physical do-
main Ωp with the adaptive mesh described in the previous subsection. The computa-
tional domain Ωc is rectangular and a uniform M1×M2 mesh {(ξi,ηj), i= 0,··· ,M1, j=
0,··· ,M2} is given on it. Accordingly, the physical domain Ωp is discretized into a
M1×M2 adaptive mesh. The discretization of the evolution equations in Eq. (2.13) is

φn+1
i,j −φn

i,j

∆t
=−(σ13)

n
i,j−

(

∂γ

∂φ

)n

i,j

−σ
app
13 ,

ψn+1
i,j −ψn

i,j

∆t
=−(σ23)

n
i,j−

(

∂γ

∂ψ

)n

i,j

−σ
app
23 , (3.9)

where the notation f n
i,j = f (xi,yj,tn) for a function f defined on Ωc×[0,∞), and ∆t is the

time step size.
The stress components (σ13)

n
i,j and (σ23)n

i,j are numerical approximations of the inte-

gral expressions in Eqs. (2.14) and (2.15) in the computational domain Ωc:

(σ13)
n
i,j= ∑

0≤ i1≤ M1
0≤ j1≤ M2
(i1, j1) 6=(i, j)

{

µ

4π

yn
i,j−yn

i1,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1 ,j1

)2]3/2

(−φξ xη+φηxξ

J

)n

i1,j1

+
µ

4π(1−ν)

xn
i,j−xn

i1,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1 ,j1

)2]3/2

(

φξyη−φηyξ

J

)n

i1,j1

+
µν

4π(1−ν)

xn
i,j−xn

i1,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1 ,j1

)2]3/2

(−ψξ xη+ψηxξ

J

)n

i1,j1

}

|Jn
i,j|h1h2

+(s1)
n
i,j, (3.10)

(σ23)
n
i,j= ∑

0≤ i1≤ M1
0≤ j1≤ M2
(i1, j1) 6=(i, j)

{

µν

4π(1−ν)

yn
i,j−yn

i1 ,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1,j1

)2]3/2

(

φξyη−φηyξ

J

)n

i1,j1

+
µ

4π

xn
i,j−xn

i1,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1,j1

)2]3/2

(

ψξyη−ψηyξ

J

)n

i1,j1

+
µ

4π(1−ν)

yn
i,j−yn

i1,j1

[(xn
i,j−xn

i1,j1
)2+(yn

i,j−yn
i1 ,j1

)2]3/2

(−ψξ xη+ψηxξ

J

)n

i1,j1

}

|Jn
i,j|h1h2

+(s2)
n
i,j, (3.11)
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for i=0,1,2,··· ,M1 and j=0,1,2,··· ,M2, where J= xξyη−xηyξ is the Jacobian of the map-
ping, h1 and h2 are the grid constants in the direction of ξ and η, respectively, and (s1)

n
i,j,

(s2)n
i,j are contributions from the local singular integrals (see the paragraph below) whose

formulas will be given in the next subsection in Eqs. (3.14) and (3.15). The partial deriva-
tives with respect to ξ and η are calculated by the central difference scheme. In this pa-
per, we use Neumann boundary conditions. Accordingly, φ−1,j1 =φ0,j1 , φM1+1,j1 =φM1,j1 ,
φi1,−1=φi1,0, φi1,M2+1=φi1,M2

when the formers are needed in the central difference scheme
for its partial derivatives, and same for ψ.

In fact, Eqs. (3.10) and (3.11) are discretizations of the corresponding integral formulas
in Eqs. (2.14) and (2.15) by constant approximation over each small cell in the computa-

tional domain [ξi1 ,j1 − h1
2 ,ξi1,j1 +

h1
2 ]×[ηi1 ,j1− h2

2 ,ηi1,j1+
h2
2 ]. The singular integrals over the

small cells when (i1, j1) = (i, j), denoted by (s1)
n
i,j and (s2)n

i,j in Eqs. (3.10) and (3.11), re-

spectively, will be discussed in the next subsection. To obtain Eqs. (3.10) and (3.11), we
have also used

φx=
φξyη−φηyξ

J
,

φy=
−φξ xη+φηxξ

J
, (3.12)

and same for the partial derivatives of ψ.
We calculate the summations in the stress components in Eqs. (3.10) and (3.11) using

the fast multipole method (FMM) [33,34]. Due to the double summations in these formu-
las, a direct summation method requires O(N2) operations, where N=(M1+1)(M2+1)
is the total number of grid points. We use the new version FMM for evaluating the stress
field of dislocation ensembles developed in Ref. [34] to calculate these double summa-
tions, whose computational cost is asymptotically O(N) with an optimized prefactor.
The method developed in Ref. [34] is to calculate the long-range stress field of three-
dimensional distributions of dislocations, which takes the following form after discretiza-
tion of integrals along all the dislocations:

σij(Xh)= ∑
l,r,s,t

q
(ij)
lrstR,rst(Xh−X∗

l ), (3.13)

where Xh, h= 1,2,··· ,N0, are the target points on the dislocations, X∗
l , l = 1,2,··· ,N∗, are

the source points on the dislocations, R(Xh−X∗
l ) is the distance between the two points

Xh and X∗
l , R,ijk is the third order partial derivative of R with respect to spatial variables

defined as R,ijk =∂3R/∂xi∂xj∂xk (where x1, x2 and x3 are three coordinate variables), and

q
(ij)
lrst is a coefficient depending on the Burgers vector and unit tangent vector of the dislo-

cation at X∗
l . More details of this method can be found in Ref. [34]. Here the distribution

of dislocations in the Peierls-Nabarro model with discrete stress formulas in Eqs. (3.10)
and (3.11) is a special case in which all the target and source points are located in a single
slip plane.
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In summary of our numerical method for the generalized Peierls-Nabarro model, we
first generate an initial adaptive mesh (the Winslow mapping) using the iterative grid re-
distribution method in Section 3.1 and the initial conditions of φ an ψ. Then the evolution
equations of φ and ψ are solved in the computational domain (ξ,η)∈Ωc using the scheme
in Eq. (3.9) until max|∇cφ|> TOL, where TOL is some prescribed number. During the
evolution, the stress components in Eq. (3.9) are calculated by Eqs. (3.10) and (3.11) using
FMM. When max|∇cφ|>TOL happens, a new adaptive mesh is obtained using the iter-
ative grid redistribution method. The evolution in Eq. (3.9) is then continued on the new
adaptive mesh. This procedure repeats until an equilibrium state of dislocation structure
is reached.

3.3 Local integrals with singularities

In this subsection, we discuss the terms (s1)
n
i,j and (s2)n

i,j in Eqs. (3.10) and (3.11), which

are the approximations respectively of the integrals in Eqs. (2.14) and (2.15) over the small
region D

p
i,j containing the point (xi,j,yi,j) and mapped from the small region (ξ1,η1)∈Dc

i,j=

[ξi,j− h1
2 ,ξi,j+

h1
2 ]×[ηi,j− h2

2 ,ηi,j+
h2
2 ] in the computational domain.

Note that the singular integrals in Eqs. (2.14) and (2.15) are integrable in the sense of
Cauchy principal value. The summations in Eqs. (3.10) and (3.11) give leading order ap-
proximations to these integrals in which the singular integrals over the small cells when
(i1, j1)=(i, j) are neglected. The errors of such approximations are O(h1 lnh1+h2 lnh2).

The approximations of the singular integrals over these small cells are derived in
the appendix, and will reduce the errors to O(h2

1 lnh1+h2
2 lnh2) if they are included in

Eqs. (3.10) and (3.11), respectively, to approximate the corresponding integral expressions
of σ13 and σ23 in Eqs. (2.14) and (2.15). However, the full expressions of these higher
order correction terms are quite lengthy, see the appendix. Instead, we keep only a few
second order derivative terms of φ and ψ in (s1)i,j and (s2)i,j that help to stabilize the
numerical scheme. The errors after incorporation of these terms will still be O(h1 lnh1+
h2 lnh2). When x and y are locally linear functions of ξ and η, respectively, the errors after
incorporation of these terms will be reduced to O(h2

1+h2
2).

The adopted expressions for these singular integrals are

(s1)i,j≈−(φxx)i,j
µ

4π(1−ν)

∫

D
p
i,j

(xi,j−x1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φyy)i,j
µ

4π

∫

D
p
i,j

(yi,j−y1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(ψxy)i,j
µν

4π(1−ν)

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1 (3.14)
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and

(s2)i,j≈−(ψxx)i,j
µ

4π

∫

D
p
i,j

(xi,j−x1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(ψyy)i,j
µ

4π(1−ν)

∫

D
p
i,j

(yi,j−y1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φxy)i,j
µν

4π(1−ν)

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1, (3.15)

where

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈h1





J
√

x2
η+y2

η





i,j

[

sin(θ2−θ3)+sin(θ1+θ3)

+
sin2θ3

2
ln

(1+sin(θ2+θ3))(1+sin(θ1−θ3))

(1−sin(θ2+θ3))(1−sin(θ1−θ3))

]

+h2





J
√

x2
ξ+y2

ξ





i,j

[

sin(θ2−θ4)

−sin(θ1+θ4)+
sin2θ4

2
ln

(1−sin(θ1−θ4))(1+sin(θ2+θ4))

(1+sin(θ1−θ4))(1−sin(θ2+θ4))

]

, (3.16)

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈h1





J
√

x2
η+y2

η





i,j

[

−sin(θ2−θ3)−sin(θ1+θ3)

+
cos2 θ3

2
ln

(1+sin(θ2+θ3))(1+sin(θ1−θ3))

(1−sin(θ2+θ3))(1−sin(θ1−θ3))

]

+h2





J
√

x2
ξ+y2

ξ





i,j

[

sin(θ1+θ4)

−sin(θ2−θ4)+
cos2 θ4

2
ln

(1−sin(θ1−θ4))(1+sin(θ2+θ4))

(1+sin(θ1−θ4))(1−sin(θ2+θ4))

]

, (3.17)

and

θ1=

(

tan−1 −yξh1+yηh2

xξh1−xηh2

)

i,j

, θ2=

(

tan−1 yξ h1+yηh2

xξh1+xηh2

)

i,j

,

θ3=

(

tan−1 xη

yη

)

i,j

, θ4=

(

tan−1 xξ

yξ

)

i,j

. (3.18)
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4 Numerical examples

In this section, we present test examples using our numerical method for a generalized
Peierls-Nabarro model based on the fast multipole method and the iterative grid redis-
tribution. We focus on the core structures of straight dislocations and dislocation loops
on the (111) planes of fcc Al and Cu. The values of related physical parameters of Al and
Cu are given in the last paragraph of Section 2. We also present numerical examples of a
straight dislocation on the interface of epitaxial thin film and substrate.

4.1 A straight dislocation

We first apply our adaptive numerical method to a straight dislocation, and compare the
result with that of the available analytic formula and those obtained on uniform meshes.

We consider a straight edge dislocation. The dislocation is lying along the y-axis.
The Burgers vector is in the x direction. Following the setting of the available analytic
formula, we only consider the disregistry component φ which is the component in the

direction of the Burgers vector, and use the Frenkel sinusoidal potential γ(φ)= µb2

4π2d
(1−

cos
2πφ

b ), where d=
√

2/3b is the interplanar distance in the [111] direction. We choose
ν= 0.347 which is the value of Al. The analytic solution for this edge dislocation is [1]:
φ(x)= b

π tan−1 x
ζ , where ζ= d

2(1−ν)
is the core width of the dislocation.

The physical domain and computational domain in our simulation are [−π,π]2, for
which we choose the length unit such that the length of the Burgers vector is b=0.3. Thus
the domain size is L= 21b in each direction. Periodic boundary condition is used at the
domain boundaries in the y direction for the infinite extension of the dislocation in the +y
and −y directions. To compute the solution of this one-dimensional problem, the mesh
in the y direction is a fine uniform mesh with N = 64 grid points. Neumann boundary
condition is used at the domain boundaries in the x direction to mimic a dislocation in
an infinite domain for which analytic formula is available. The computational domain in
x direction is discretized into a uniform M=16 mesh. We choose the weight function in
grid redistribution to be w=1+|φx|+0.8333b|φxx |, and only redistribute the mesh points

in the x direction. The criterion to invoke the grid redistribution process is max| dφ
dξ |>

TOL=2.5b/L.

We start the evolution from a linear function φ(x) with increment of b over the x di-
rection of the domain, and the initial mesh on the physical domain is equal to the uniform
mesh on the computational domain in the grid redistribution. The disregistry function φ
converges to an equilibrium state that represents the core structure of the dislocation.

Fig. 2(a) shows the equilibrium dislocation disregistry function φ(x) obtained using
our numerical method and comparison with the available analytic formula. Excellent
agreement can be seen from this figure. The center of this dislocation is located at the ori-
gin in the figure, and the disregistry function φ varies significantly within a small region
near the dislocation center, which is the core region of the dislocation. Note that partial
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Figure 2: (a) Equilibrium dislocation disregistry function φ(x) obtained using our adaptive method with M=16

and comparison with the available analytic formula φ(x) = b
π tan−1 x

ξ , where ζ = d
2(1−ν)

, for a straight edge

dislocation. Dots: results of our numerical method. Dash line: results of the analytical formula. (b) The
redistributed mesh generated for the equilibrium profile of φ(x) in our calculation shown in (a). (c) The Burgers

vector density ρ(x)=φ′(x)= b
π

ζ
x2+ζ2 obtained using our adaptive method with M=16, and comparisons with

the result of analytic formula and those obtained on uniform meshes.

dissociation of dislocations is not included under the setting of this analytic formula.

The final redistributed mesh generated for the equilibrium profile of φ(x) in our nu-
merical calculation is shown in Fig. 2(b) (see also (a)). As expected, the grid points in
the redistributed mesh are concentrated within the core region of the dislocation where
|φ′(x)| is large.
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An important application of the Peierls-Nabarro model is that it gives a nonsingular

Burgers vector density of the dislocation, which is ρ(x)=φ′(x) and equals b
π

ζ
x2+ζ2 in this

case. The Burgers vector density does not only describe the core profile of the dislocation,
but also leads to accurate nonsingular stress field near the dislocation and nonsingular
line energy of the dislocation. The obtained Burgers vector density using our adaptive
method and comparison with the analytic formula are shown in Fig. 2(c). The deriva-

tive of φ(x) is calculated by central difference scheme: ρ(xi+ 1
2
)=φ′(xi+ 1

2
)= φ(xi+1)−φ(xi)

xi+1−xi
.

It can be seen that our numerical result on the adaptive mesh accurately resolves the
regularized-delta-function-shape Burgers vector density ρ(x) even within the dislocation
core region.

We have also performed convergence tests on uniform meshes for ρ(x), and the re-
sults are also shown in Fig. 2(c). We do see convergence of the numerical results to the
analytic formula as the uniform mesh is refined from M = 16 to 32 and finally to 64.
However, the convergence is slow, and the result of the adaptive mesh with M=16 grid
points is notably more accurate than the result of M=64 uniform mesh near the peak of
the profile of ρ(x).

4.2 Dislocations near a free surface

Thin film materials play important roles in microelectronic and photonic applications. A
thin film is stressed due to the lattice mismatch between the film and the substrate, and
can be relaxed by formation of misfit dislocations beyond a critical film thickness. The
misfit dislocations stay at the film-substrate interface under the Peach-Koehler force due
to misfit stress and the image force due to the free film surface. The core profile of a misfit
dislocation is essential to many important properties of the thin film materials such as the
critical thickness for the formation of misfit dislocations based on energy calculation [6,7].

We consider a straight edge dislocation parallel to the free film-surface and lying in a
slip plane with angle α f =cos−1 1√

3
to the film surface, see Fig. 3(a). The height of the thin

film is h f , and is on an infinite substrate. The x direction is along the slip plane, and the
portion in the film is [−h f cscα f ,0]. Assume that the elastic constants are the same in the
film and the substrate, and the Poisson ratio is ν=0.25.

In this case, the disregistry function φ is defined for x∈ [−h f cscα f ,∞], and the evolu-
tion equation is

∂φ

∂t
=−

(

σ13+
∂γ

∂φ

)

, (4.1)

where the stress component is given by

σ13(x)=
µ

2π(1−ν)

∫ ∞

xs

{

1

x−x1

−
5

∑
n=0

cn(x1−xs)n(x−xs)5−n

[(x1−xs)2−2(x−xs)(x1−xs)cos2α f +(x−xs)2]3

}

φx(x1)dx1+σ0
13χ f (x), (4.2)
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Figure 3: An edge dislocation located in the film-substrate interface (a), and profiles of the disregistry function

φ when the misfit ǫ0=0.01 (b), 0.02 (c), and 0.04 (d). The results are compared with the analytic result for a
dislocation in an infinite medium.
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where xs =−h f cscα f is the x-coordinate of the intersection point of the slip plane with

the film surface, and the Frenkel sinusoidal potential is γ(φ)= µb2

4π2d
(1−cos

2πφ
b ).

The expression of σ13 in Eq. (4.2) consists of the stress in an infinite medium (the
1/(x−x1) term) and the image stress due to the free surface [6, 7, 40] (the rest terms),
where the coefficients are

c0=1, c1=−1−6cos2α f +2cos22α f , c2=6−2cos2α f +6cos22α f ,

c3=−6cos2α f −4cos32α f , c4=−3+2cos2α f +6cos22α f , c5=1−2cos22α f . (4.3)

The term σ0
13χ f (x) in Eq. (4.2) comes from the constant misfit stress in the film, where

χ f (x)=

{

1, −h f cscα f ≤ x≤0,

0, otherwise,
(4.4)

and

σ0
13=σ0sinα f cosα f , σ0=2µ

1+ν

1−ν
ǫ0. (4.5)

Here ǫ0 is the misfit due to the lattice mismatch between the film and the substrate.
We choose the simulation domain to be [−h f cscα f ,−h f cscα f+L], where the size of the

domain is L=21b. (Numerically, the computational domain is [−h f cscα f ,−h f cscα f +2π],
where b = 0.3.) Neumann boundary condition is used on the domain boundaries. We
focus on the grid redistribution in this example, and use direct summation for the calcu-
lation of the integral in the total stress field in Eq. (4.2). The adaptive mesh has M= 16
grid points and the same numerical treatments as in the previous example. The FMM
implementation and grid redistribution can be readily applied to more general dislo-
cations near free surfaces, in which proper boundary conditions and more numerical
treatments for the image force are needed when the dislocations intersect the free sur-
faces [38, 39, 41, 42]. Such generalization will be explored in the future work.

Fig. 3(b) and (c) show the obtained disregistry function φ for different thin film height
h f = 4b,8b and different misfit ǫ0 = 0.01,0.02,0.04, as well as comparisons with the ana-
lytical formula in an infinite medium. In each case, we can see that the grid points in
the redistributed mesh are concentrated within the core region of the dislocation where
|φ′(x)| is large. The misfit dislocation stays near the film-substrate interface (x=0) under
the image force due to the free film surface, which attracts the dislocation towards the
free surface, and the Peach-Koehler force due to the misfit stress, which pushes the dis-
location away from the free surface when it is in the thin film. Fig. 3(b) shows the results
when the misfit ǫ0 = 0.01. The image force is stronger than the force due to misfit stress
in the case h f =4b, and the dislocation is attracted to the free surface (compared with the
analytical formula in an infinite medium). Whereas the two forces are almost balanced
in the case of h f =8b, and deviation of φ from the analytic formula in an infinite medium

without these two forces is small. When the misfit ǫ0 increases to 0.02 (Fig. 3(c)) and
further to 0.04 (Fig. 3(d)), the Peach-Koehler force due to misfit stress becomes stronger,
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the disregistry function φ in the film is reduced further towards the value 0, leading to
smaller dislocation core width on the side of the film (x<0). Note that there is no misfit
stress in the substrate (x > 0). When the misfit ǫ0 = 0.04, the Peach-Koehler force due
to misfit stress is even stronger, instead of further reducing the dislocation core width,
the dislocation center in the case of h f =8b is pushed slightly into the substrate from the
film-substrate interface.

4.3 Dislocation loops

In this subsection, we report the simulation results of the core structure of dislocation
loops in Al and Cu. The dislocation loops are in the xy plane which represents the (111)
crystallography plane. The x-axis is in the [1̄10] direction which is in the direction of the
Burgers vector b, and the y-axis is in the [1̄1̄2] direction. The center of a loop is located at
the origin. We use the full generalized stacking fault energy in Eq. (2.17) which enables
partial dissociation for the dislocation core structure.

The physical domain and the computational domain in our simulation are [−π,π]2,
for which we choose the length unit such that the length of the Burgers vector is
b = 0.15. Thus the domain size is L = 42b in each direction. Neumann bound-
ary condition is used at the domain boundaries to mimic a dislocation loop in
an infinite medium. The computational domain is discretized into a uniform 64×
64 mesh. We choose the weight function in the grid redistribution to be w =
√

1+0.02(φ/φ
(0)
max)2+0.02(|∇p φ|/φ

(1)
max)2+0.02(|∆pφ|/φ

(2)
max)2, where φ

(0)
max, φ

(1)
max and

φ
(2)
max are the maximum values of |φ|, |∇p φ| and |∆pφ|, respectively, over the physical

domain. The criterion to invoke the grid redistribution process is max|∇c φ|> TOL =
5b/(L/2).

To obtain the core structure of a dislocation loop, a constant shear stress is needed
to prevent the loop from shrinking as in Ref. [21]. The resulting unstable equilibrium
configuration gives local maximum of the total energy. In order to obtain this unstable
configuration of the dislocation loop, a Lagrange multiplier is used to keep the area en-
closed by a dislocation loop constant during the energy minimization. The control area
is proportional to the integral of the disregistry component φ which is in the direction of
the Burgers vector. That is, we minimize the total energy in Eq. (2.8) subject to the con-
straint

∫

R2 φ(x,y,t)dxdy=A0, where A0=
∫

R2 φ(x,y,0)dxdy. Using the method of Lagrange
multiplier, we look for the stationary solution of the functional

Eλ=Eelastic+Emisfit+λ

(

∫

R2
φdxdy−A0

)

, (4.6)

which is found by solving the following evolution equations to equilibrium:

∂φ

∂t
=−M

(

σ13+
∂γ

∂φ
+λ

)

,
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∂ψ

∂t
=−M

(

σ23+
∂γ

∂ψ

)

,

∂λ

∂t
=Mλ

(

∫

R2
φdxdy−A0

)

, (4.7)

where M and Mλ are some positive constants. Comparing with the equilibrium condi-
tions in Eq. (2.12), it can be seen that the resulting Lagrange multiplier λ is equal to the
constant applied stress σ

app
13 .

In the two examples of dislocation loops in Al and Cu, the initial conditions in the
evolution are φ= b inside a circle and 0 outside with smooth transition in between, and
ψ = 0 over the domain. This configuration represents a circular dislocation loop. The
radius of the initial circular loop is R=11b.

The initial mesh on the physical domain is equal to the uniform mesh on the com-
putational domain in the grid redistribution. The disregistry functions φ and ψ together
with the constant applied stress converge to an equilibrium state that represents the core
structure of a dislocation loop that encloses the same area as the initial circular loop. The
dislocation core region is identified by the region between the contour lines of φ= 1

4 b and

φ= 3
4 b [21].

The core profile of a dislocation loop in Al is shown in Fig. 4. This loop is in (unstable)
equilibrium with the applied stress σ

app
13 = 0.040µ. Fig. 4(a) and (b) show the disregistry

component φ along the x direction and y direction, respectively. This disregistry com-
ponent is in the direction of the Burgers vector and determines the dislocation loops.
Fig. 4(c) and (d) show the disregistry component ψ along the x direction and y direction,
respectively. This disregistry component is in the direction perpendicular to the Burg-
ers vector, and enables dislocation partial dissociation in the Peierls-Nabarro model. It
can be seen that the values of ψ are very small compared with the values of φ for this
dislocation loop in Al.

The dislocation core region is shown in Fig. 4(e). These two contour lines are also
the locations of the partial dislocations (Shockley partials) of the dislocation loop [1].
We can see that in this dislocation loop in Al, the two Shockley partials are not clearly
separated, only some tendency of splitting is shown, which agrees with the theoretical
prediction [1]. This dislocation loop is elongated in the direction of the Burgers vector (the
x direction), which agrees with the classical dislocation theory that the edge dislocations
have larger line energy than the screw dislocations [1]. These simulation results also
agree with previous results obtained using periodic boundary conditions [21].

The final redistributed mesh in the physical domain generated for the equilibrium
state of this dislocation loop in Al is shown in Fig. 4(f). It can be seen that the grid
points in the redistributed mesh are indeed concentrated within the core region of this
dislocation loop.

Now we examine the obtained applied stress σ
app
13 =0.040µ that maintains this disloca-

tion loop. This unstable equilibrium state is the result of balance between the line tension
force which tends to shrink the loop, and the Peach-Koehler force due to the applied
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Figure 4: Core structure of a dislocation loop in Al. (a) Disregistry φ along the x-axis. (b) Disregistry φ along
the y-axis. (c) Disregistry ψ along the x-axis. (d) Disregistry ψ along the y-axis. (e) Core region and locations
of the two Shockley partials of this dislocation loop. (f) Grid distribution in the physical domain. Since the two
Shockley partials are very close to each other, we only plot the center of the core region of the dislocation loop
which is identified by the contour line of φ= b/2 in (f). The Burgers vector b is in the x direction.
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stress which tends to expand it. The line tension force at the point where the dislocation
is screw is approximately [1, 43]

T=
µb2(1+ν)

4π(1−ν)

1

Rs
ln

4Rs

b
, (4.8)

where Rs is the curvature radius at the screw point and the dislocation core radius is b.
To estimate the value of this line tension force, we approximate the dislocation loop by an
ellipse, see Fig. 4(e), and the major and minor axes of the ellipse are a1 =13b and a2 =9b,
respectively. At a screw point, the curvature radius is approximately Rs = a2

1/a2 = 19b.
This gives an estimate of the line tension force of T = 0.037µb, which agrees excellently
with the Peach-Koehlor force σ

app
13 b=0.040µb.

The core profile of a dislocation loop in Cu is shown in Fig. 5. This loop is in (unsta-
ble) equilibrium with the applied stress σ

app
13 = 0.052µ. Fig. 5(a)-(d) show the disregistry

components φ and ψ along the x- and y-axes. Unlike the dislocation loop in Al in Fig. 4,
the two Shockley partials of a dislocation loop in Cu, identified by the contour lines of
φ= 1

4 b and φ= 3
4 b, respectively, are clearly separated. Between the two partial loops is the

stacking fault region, which is an energy local minimum state of the generalized stacking

fault energy in Eq. (2.17) with (φ,ψ)=( 1
2 b,

√
3

6 b). The locations of the two Shockley partial
loops of this dislocation loop in Cu are plotted in Fig. 5(e). The wide separation of the
two Shockley partials agrees with the theoretical prediction [1]. It is also interesting to
see from Fig. 5(e) that the two partial loops of the perfect loop in Cu are elongated ap-
proximately in the directions of their own Burgers vectors, respectively. This behavior is
quite different from that of the undissociated or slightly dissociated perfect loops in Al in
Fig. 4(e), in which the two partial loops together with the perfect loops are all elongated
in the direction of the Burgers vector of the perfect loops. These simulation results also
agree with previous results obtained using periodic boundary conditions [21].

Fig. 5(e) also shows the final redistributed mesh in the physical domain generated for
the equilibrium state of this dislocation loop in Cu. In this case, the grid points in the
redistributed mesh are concentrated near the locations of the two Shockley partial loops
where the disregistry component φ changes rapidly. From Fig. 4(f) and Fig. 5(e), one can
see that our numerical method successfully generates the desired adaptive meshes for
the two different behaviors of the disregistry function φ for dislocation loops in Al and
Cu.

5 Summary

We have presented a numerical method for a generalized Peierls-Nabarro model for
curved dislocations [21], based on the fast multipole method [33, 34] and the iterative
grid redistribution [35]. The fast multipole method enables the calculation of the long-
range elastic interaction within operations that scale linearly with the total number of
grid points. The iterative grid redistribution places more mesh nodes in the regions
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Figure 5: Core structure of a dislocation loop in Cu. (a) Disregistry φ along the x-axis. (b) Disregistry φ along
the y-axis. (c) Disregistry ψ along the x-axis. (d) Disregistry ψ along the y-axis. (e) Core region and locations
of the two Shockley partials of this dislocation loop, and grid distribution in the physical domain. The Burgers
vector b is in the x direction.
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around the dislocations than in the rest of the domain, thus increases the accuracy and
efficiency. This numerical method has an overall computational cost of O(N), where N
is the total number of numerical grid points, thus it significantly improves the available
methods in which the long-range stress fields are calculated by direct summations with
O(N2) operations [7, 10, 13, 15–18]. Compared with the previous FFT based method [21],
this new method is more flexible to handle problems with general boundary conditions.

We have presented numerical examples using this method on the core structure of
dislocations in Al and Cu, whose core regions are very narrow and wide, respectively.
In both cases, our numerical method is able to generate the desired adaptive meshes
with grid points concentrated mainly within the regions where the disregistry function
changes rapidly. We have also presented numerical examples of the core profile of a
straight dislocation on the interface of epitaxial thin film and substrate, where the image
stress due to the free surface is not negligible.

This numerical method can be generalized to dislocations in anisotropic medium [21].
It can also be applied to more general dislocations near free surfaces, in which proper
boundary conditions and more numerical treatments for the image force are needed
when the dislocations intersect the free surfaces [38,39,41,42]. These generalizations and
applications of the developed numerical methods will be explored in the future work.
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Appendix: Approximations of local singular integrals

In this appendix, we calculate the approximations of the integrals in (σ13)i,j and (σ23)i,j in

Eqs. (2.14) and (2.15) over the small region D
p
i,j containing the point (xi,j,yi,j) and mapped

from the small region (ξ1,η1)∈Dc
i,j =[ξi,j− h1

2 ,ξi,j+
h1
2 ]×[ηi,j− h2

2 ,ηi,j+
h2
2 ] in the computa-

tional domain, denoted by (s1)i,j and (s2)i,j, respectively. These integrals contain singular
integrands which require special treatment in numerical approximation. If (s1)i,j and
(s2)i,j are added, respectively, in Eqs. (3.10) and (3.11), the numerical errors of (σ13)i,j and
(σ23)i,j will be reduced from O(h1 lnh1+h2 lnh2) to O(h2

1 lnh1+h2
2 lnh2).

We first approximate these singular integrals using Taylor expansions of the partial
derivatives of φ and ψ at the point (xi,j,yi,j). For example, for the first term in Eq. (2.14),
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we have

µ

4π

∫

D
p
i,j

yi,j−y1

[(xi,j−x1)2+(yi,j−y1)2]3/2
φy(x1,y1)dx1dy1

=
µ

4π

∫

D
p
i,j

yi,j−y1

[(xi,j−x1)2+(yi,j−y1)2]3/2

[

(φy)i,j+(φxy)i,j(x1−xi,j)+(φyy)i,j(y1−yi,j)

+O
(

|x1−xi,j|2+|y1−yi,j|2
)

]

dx1dy1

=−(φy)i,j
µ

4π

∫

D
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φxy)i,j
µ

4π

∫

D
p
i,j

(x1−xi,j)(y1−yi,j)

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φyy)i,j
µ

4π

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1+O(h2

1+h2
2). (A.1)

Summarizing the approximations of all the terms, we have

(s1)i,j≈−
[

(φx)i,j+ν(ψy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

x1−xi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φy)i,j
µ

4π

∫

D
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−
[

(φxx)i,j+ν(ψxy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(φyy)i,j
µ

4π

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−
[

(2−ν)(φxy)i,j+ν(ψyy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

(x1−xi,j)(y1−yi,j)

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1,

(A.2)

and

(s2)i,j≈−(ψx)i,j
µ

4π

∫

D
p
i,j

x1−xi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−
[

ν(φx)i,j+(ψy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−(ψxx)i,j
µ

4π

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1
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−
[

ν(φxy)i,j+(ψyy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

−
[

ν(φxx)i,j+(2−ν)(ψxy)i,j

]

µ

4π(1−ν)

∫

D
p
i,j

(x1−xi,j)(y1−yi,j)

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1. (A.3)

The second partial derivatives in these expressions can be calculated by repeating
the first partial derivative formulas in Eq. (3.12), in which the partial derivatives with
respect to ξ and η are calculated using the central difference scheme. The errors of these
approximations are of O(h2

1+h2
2).

It can be seen from Eqs. (A.2) and (A.3) that we only need to calculate the following
five integrals over D

p
i,j:

∫

D
p
i,j

x1−xi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1,

∫

D
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1,

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1,

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1,

∫

D
p
i,j

(x1−xi,j)(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1.

We denote D̄
p
i,j to be the parallelogram that approximates the small cell D

p
i,j with

boundaries

x1= xi,j+(xξ)i,j(ξ1−ξi,j)+(xη)i,j(η1−ηi,j),

y1=yi,j+(yξ)i,j(ξ1−ξi,j)+(yη)i,j(η1−ηi,j), (A.4)

where ξ1−ξi,j =± h1
2 or η1−ηi,j =± h2

2 , see Fig. 6. Using polar coordinates of the xy plane,
it can be calculated that

∫

D
p
i,j

(x1−xi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈
∫

D̄
p
i,j

(xi,j−x1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1
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Figure 6: Domains over which the local singular integrals in Eqs. (A.5)-(A.7) are evaluated. (a) The small region

Dc
i,j=[ξi,j− h1

2 ,ξi,j+
h1
2 ]× [ηi,j− h2

2 ,ηi,j+
h2
2 ] in the computational domain. The center of the region is (ξi,j,ηi,j).

(b) In the physical domain, the parallelogram D̄
p
i,j is used to approximate the exact domain D

p
i,j mapped from

the small region Dc
i,j in (a). The center of the parallelogram is (xi,j(ξi,j,ηi,j),yi,j(ξi,j,ηi,j)).

=h1





J
√

x2
η+y2

η





i,j

[

sin(θ2−θ3)+sin(θ1+θ3)

+
sin2θ3

2
ln

(1+sin(θ2+θ3))(1+sin(θ1−θ3))

(1−sin(θ2+θ3))(1−sin(θ1−θ3))

]

+h2





J
√

x2
ξ+y2

ξ





i,j

[

sin(θ2−θ4)

−sin(θ1+θ4)+
sin2θ4

2
ln

(1−sin(θ1−θ4))(1+sin(θ2+θ4))

(1+sin(θ1−θ4))(1−sin(θ2+θ4))

]

, (A.5)

∫

D
p
i,j

(y1−yi,j)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈
∫

D̄
p
i,j

(yi,j−y1)
2

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

=h1





J
√

x2
η+y2

η





i,j

[

−sin(θ2−θ3)−sin(θ1+θ3)

+
cos2 θ3

2
ln

(1+sin(θ2+θ3))(1+sin(θ1−θ3))

(1−sin(θ2+θ3))(1−sin(θ1−θ3))

]

+h2





J
√

x2
ξ+y2

ξ





i,j

[

sin(θ1+θ4)

−sin(θ2−θ4)+
cos2 θ4

2
ln

(1−sin(θ1−θ4))(1+sin(θ2+θ4))

(1+sin(θ1−θ4))(1−sin(θ2+θ4))

]

, (A.6)
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∫

D
p
i,j

(x1−xi,j)(y1−yi,j)

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈
∫

D̄
p
i,j

(x1−xi,j)(y1−yi,j)

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

=h1





J
√

x2
η+y2

η





i,j

[

cos(θ1+θ3)−cos(θ2−θ3)

−sin2θ3

4
ln

(1+sin(θ2+θ3))(1+sin(θ1−θ3))

(1−sin(θ2+θ3))(1−sin(θ1−θ3))

]

+h2





J
√

x2
ξ+y2

ξ





i,j

[

−cos(θ2−θ4)

−cos(θ1+θ4)−
sin2θ4

4
ln

(1−sin(θ1−θ4))(1+sin(θ2+θ4))

(1+sin(θ1−θ4))(1−sin(θ2+θ4))

]

, (A.7)

where the expressions of θ1, θ2, θ3, and θ4 are given by Eq. (3.18).

In order to evaluate the rest two singular integrals, we denote D̂
p
i,j to be the higher

order approximation of the small cell D
p
i,j with curved boundaries

x1=xi,j+(xξ)i,j(ξ1−ξi,j)+(xη)i,j(η1−ηi,j)

+
1

2
(xξξ)i,j(ξ1−ξi,j)

2+
1

2
(xηη)i,j(η1−ηi,j)

2+(xξη)i,j(ξ1−ξi,j)(η1−ηi,j),

y1=yi,j+(yξ)i,j(ξ1−ξi,j)+(yη)i,j(η1−ηi,j)

+
1

2
(yξξ)i,j(ξ1−ξi,j)

2+
1

2
(yηη)i,j(η1−ηi,j)

2+(yξη)i,j(ξ1−ξi,j)(η1−ηi,j), (A.8)

where ξ1−ξi,j =± h1
2 or η1−ηi,j =± h2

2 . It can be evaluated using polar coordinates of the
xy plane that

∫

D
p
i,j

x1−xi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈
∫

D̂
p
i,j

x1−xi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈− cosθ1

2
ln

h1(xξ sinθ1−yξ cosθ1)

h2(yη cosθ1−xη sinθ1)

· (
1
2 xξξ h2

1+
1
2 xηηh2

2−xξηh1h2)(yξh1−yηh2)−( 1
2 yξξ h2

1+
1
2 yηηh2

2−yξηh1h2)(xξh1−xηh2)

(xξh1−xηh2)2+(yξ h1−yηh2)2
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− cosθ2

2
ln

h1(xξ sinθ2−yξ cosθ2)

h2(yη cosθ2−xη sinθ2)

· −( 1
2 xξξh2

1+
1
2 xηηh2

2+xξηh1h2)(yξ h1+yηh2)+( 1
2 yξξ h2

1+
1
2 yηηh2

2+yξηh1h2)(xξh1+xηh2)

(xξh1+xηh2)2+(yξh1+yηh2)2
,

(A.9)

∫

D
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈
∫

D̂
p
i,j

y1−yi,j

[(xi,j−x1)2+(yi,j−y1)2]3/2
dx1dy1

≈− sinθ1

2
ln

h1(xξ sinθ1−yξ cosθ1)

h2(yη cosθ1−xη sinθ1)

· (
1
2 xξξh2

1+
1
2 xηηh2

2−xξηh1h2)(yξh1−yηh2)−( 1
2 yξξ h2

1+
1
2 yηηh2

2−yξηh1h2)(xξh1−xηh2)

(xξh1−xηh2)2+(yξh1−yηh2)2

− sinθ2

2
ln

h1(xξ sinθ2−yξ cosθ2)

h2(yη cosθ2−xη sinθ2)

· −( 1
2 xξξh2

1+
1
2 xηηh2

2+xξηh1h2)(yξ h1+yηh2)+( 1
2 yξξ h2

1+
1
2 yηηh2

2+yξηh1h2)(xξh1+xηh2)

(xξh1+xηh2)2+(yξh1+yηh2)2
.

(A.10)

In summary, the approximations of the local singular terms (s1)i,j and (s2)i,j are given
by Eqs. (A.2), (A.3) and (A.5), (A.6), (A.7), (A.9), (A.10). The errors are O(h2

1 lnh1+h2
2 lnh2).
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