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Abstract. The method of mapping function was first proposed by Henrick et al. [J.
Comput. Phys. 207:542-547 (2005)] to adjust nonlinear weights in [0,1] for the fifth-
order WENO scheme, and through which the requirement of convergence order is
satisfied and the performance of the scheme is improved. Different from Henrick’s
method, a concept of piecewise polynomial function is proposed in this study and
corresponding WENO schemes are obtained. The advantage of the new method is
that the function can have a gentle profile at the location of the linear weight (or the
mapped nonlinear weight can be close to its linear counterpart), and therefore is fa-
vorable for the resolution enhancement. Besides, the function also has the flexibility
of quick convergence to identity mapping near two endpoints of [0,1], which is favor-
able for improved numerical stability. The fourth-, fifth- and sixth-order polynomial
functions are constructed correspondingly with different emphasis on aforementioned
flatness and convergence. Among them, the fifth-order version has the flattest pro-
file. To check the performance of the methods, the 1-D Shu-Osher problem, the 2-D
Riemann problem and the double Mach reflection are tested with the comparison of
WENO-M, WENO-Z and WENO-NS. The proposed new methods show the best res-
olution for describing shear-layer instability of the Riemann problem, and they also
indicate high resolution in computations of double Mach reflection, where only these
proposed schemes successfully resolved the vortex-pairing phenomenon. Other inves-
tigations have shown that the single polynomial mapping function has no advantage
over the proposed piecewise one, and it is of no evident benefit to use the proposed
method for the symmetric fifth-order WENO. Overall, the fifth-order piecewise poly-
nomial and corresponding WENO scheme are suggested for resolution improvement.
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1 Introduction

Following the introduction to the weighted essentially non-oscillatory (WENO) scheme
[1], the subsequent efficient implementation [2] made the algorithm applicable to realistic
problems. The weighting procedures and the smoothness indicator (IS) [2] eventually
became a standard. After ten years of practices, WENO schemes especially the fifth-order
version (WENO5) [2] have become one of the most popular high-order methods. Despite
the success, some issues pertaining to WENO schemes were raised. It was Henrick et
al. [3] who first pointed out that WENO5 failed to retain fifth-order accuracy at the critical
point with f ′j = 0. They further proposed the necessary and sufficient conditions for a

scheme to obtain fifth-order accuracy. As a remedy, Henrick et al. [3] proposed a carefully
designed mapping function, through which the difference between the nonlinear weight
and its linear counterpart will usually have the order of ∆x3. The corresponding scheme
was called WENO-M, which preserves fifth-order accuracy at the critical point [3].

The performance of WENO-M was tested by cases such as the 1-D Shu-Osher problem
at 400 points [3] and the 2-D double Mach reflection problem [4]. The improvement on
resolution was clearly shown through the comparison with WENO5. However, Borges
et al. [5] argued the improvement was not due to enhancement of the convergence order,
but came more from the ”assignment of larger weights to discontinuous stencils”. Still
conforming to the accuracy requirement as in Ref. [3], they proposed a new IS by using
a term comprised of higher order derivatives. The corresponding scheme was called
as WENO-Z, and preliminary tests showed its slightly better performance than that of
WENO-M [3, 4].

Focusing on revising IS, Ha et al. [4] proposed a new algorithm by combining nu-
merical approximations of first- and second-order derivatives. Two considerations were
noticed in their work, i.e., an undivided difference for derivative discretization and a pa-
rameter to control ”the trade-off between the accuracies around the smooth region and
discontinuity region”. The so-called WENO-NS scheme has shown better resolution in
the computations of double-Mach reflection and 2-D Riemann problems when compared
with WENO-M and WENO-Z.

Resolution enhancement may run the risk of numerical instability. Our tests showed
that when using WENO-NS, the computation of a 2-D supersonic flow around half cylin-
der at M = 4 blew up when the Steger-Warming scheme was used for flux splitting, to
say nothing of tougher hypersonic cases. On the one hand, efforts continue on toward
higher order and better resolution; on the other hand, schemes developed are expected
to be robust and applicable for practical problems.

A procedure is proposed in this paper to improve resolution while preserving robust-
ness. First, following the idea of mapping functions, specific piecewise polynomials of
various orders are proposed, which are targeted toward resolution enhancement. The
details are described in Section 2. Using the proposed methods, new fifth-order WENO
schemes are obtained. Next, typical numerical tests are conducted in Section 3 with the
comparison with WENO5, WENO-M, WENO-Z and WENO-NS. From computations of
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the 2-D Riemann problem, new schemes show improved resolution on shear-layer in-
stability, while hypersonic computations indicate the schemes’ capability for complex
viscous/inviscid problems. In Section 4, the potential of using single polynomial as
the mapping function is analyzed and the use of piecewise polynomial for symmetric
WENO5 scheme is discussed. Finally, conclusions are drawn in Section 5.

2 Piecewise polynomial mapping method

In this section, we first review the accuracy analysis and the mapping function developed
in Ref. [3]. Then we introduce the idea of piecewise polynomial mapping function in
detail. Discussion is made on the relationship of resolution enhancement and the flat
profile of the function at the location of the linear weight.

2.1 The review about the accuracy property, WENO-M [3], WENO-Z [5], and
WENO-NS [4]

2.1.1 The accuracy requirement to preserve the fifth-order accuracy of WENO5

First, formulations of WENO5 are briefly reviewed. Consider the 1-D hyperbolic conser-
vative law

ut+ f (u)x =0. (2.1)

Suppose the grids are equally partitioned as xj = j∆x where ∆x denotes the interval and
j is the index of the grid point, Eq. (2.1) at xj can be re-written in conservative form as

(ut)j =−
(

f̂ j+1/2− f̂ j−1/2

)/

∆x, (2.2)

where f̂ j+1/2 is the evaluation of f̂ (x) at xj+1/2, and f̂ (x) is implicitly defined by f (x)=
1

∆x

∫ x+Λx/2
x−Λx/2

f̂ (x′)dx′. From Ref. [2], f̂ (x) can be reconstructed through polynomials based

on the value set of { f (xj)}. To avoid entropy violation and improve stability, the flux
f (xj) is usually split into f+ and f− according to the eigenvalue of ∂ f (u)

/

∂u. Taking
positive splitting as an example and dropping the superscript ’+’ for brevity, the WENO
scheme can be formulated as:

f̂ j+1/2=
r′

∑
k=0

ωkqr
k, (2.3)

where r′ = r−1 for standard WENO and r denotes the grid point number of the basic
stencil, ωk is the nonlinear weight derived from the linear counterpart Cr

k, and qr
k denotes

the candidate scheme on basic stencils as qr
k = ∑

r−1
l=0 ar

k,l f
(

uj−r+k+l+1

)

. For WENO5 [2],
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r = 3, C3
k = {0.3,0.6,0.1}, and coefficients a3

k,l can be found in Ref. [2]. For brevity, the
superscript ’r’ is dropped next. The derivation of ωk is

ωk=αk

/

∑
2

l=0
αl , (2.4)

where

αk =Ck

/

(ε+ ISk)
p (2.5)

and usually p= 2 and ε= 10−5 ∼ 10−7 in Ref. [2]; ISk denotes the smoothness indicator.
Suppose the accuracy property of ISk is

ISk =D(1+O(∆xq)), (2.6)

where D denotes certain factor and q represents some accurate order explained later,
then [3]

αk =
Ck

Dp (1+O(∆xq)), (2.7)

ωk=Ck+O(∆xq). (2.8)

In Ref. [2], IS of WENO5 (usually called as ISJS) is defined as

ISJS
k =∑

2

l=1

∫ xj+1/2

xj−1/2

∆x2l−1
(

∂(l)qk(x)
/

∂x(l)
)2

dx, (2.9a)

or














ISJS
0 = 13

12

(

f j−2−2 f j−1+ f j

)2
+ 1

4

(

f j−2−4 f j−1+3 f j

)2
,

ISJS
1 = 13

12

(

f j−1−2 f j+ f j+1

)2
+ 1

4

(

f j−1− f j+1

)2
,

ISJS
2 = 13

12

(

f j−2 f j+1+ f j+2

)2
+ 1

4

(

3 f j−4 f j+1+ f j+2

)2
.

(2.9b)

For ISJS, D=(13/12)
(

f j
′′

∆x2
)2

and q will be 2 when f ′j 6=0 [2] in Eq. (2.6). As mentioned

in the introduction, Henrick et al. [3] first pointed out that at the critical point, q = 1
and the fifth-order accuracy of WENO5 will not be retained. Further, Henrick et al. [3]
proposed the following necessary and sufficient conditions for Eq. (2.3) at r=3 to retain
the fifth-order:

∑
2

l=0
(ωk−Ck)=O

(

∆x6
)

, (2.10a)
(

3ω1
j+1/2−3ω

j−1/2
1 −ω2

j+1/2+ω2
j−1/2+ω3

j+1/2−ω3
j−1/2

)

=O
(

∆x3
)

, (2.10b)

ωk−Ck=O
(

∆x2
)

. (2.10c)
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In Eq. (2.10b), the superscript ’j±1/2’ represents the evaluation location of ωk. For
WENO5, Eq. (2.10a) is automatically satisfied, and so is Eq. (2.10c) when f ′j 6= 0. Un-

der the same condition as f ′j 6= 0, Eq. (2.10b) holds according to Ref. [4, 5] by symbolic

calculation. Instead of the necessary and sufficient conditions of Eq. (2.10), a sufficient
condition for accuracy retention is proposed as [3]

ωk−Ck=O
(

∆x3
)

. (2.11)

If Eq. (2.11) can be satisfied everywhere including the critical point, the accuracy can be
well preserved theoretically. To fulfill this, Henrick at al. [3] carefully designed a mapping
function to generate new ωk from the original one of WENO5.

2.1.2 The mapping function and WENO-M

In Ref. [3], the concept of a mapping function (denoted by gk(ω)) was proposed for the
aforementioned convergence order. The function is defined in [0,1] and satisfies

gk(0)=0 and gk(1)=1, (2.12)

gk(Ck)=Ck, g
(1)
k (Ck)=0, and g

(2)
k (Ck)=0. (2.13)

Let αk in Eq. (2.5) re-computed as αk(ωk)= gk(ω), then

αk(ωk)= gk(Ck)+gk
(1)(Ck)(ωk−Ck)+

gk
(2)(Ck)

2
(ωk−Ck)

2+
gk

(3)(Ck)

6
(ωk−Ck)

3+···

=Ck+O(ωk−Ck)
3, (2.14)

where gk
(i)(ω)=∂igk(ω)

/

∂ωi. As the last step, ωk is updated by Eq. (2.4). It is easy to see
Eq. (2.11) holds by using the revised ωk. The concrete mapping function plays a key role
in above algorithm. The one proposed by Henrick et al. [3] is:

gH
k (ω)=

ω
(

Ck+Ck
2−3Ckω+ω2

)

Ck
2+ω(1−2Ck)

. (2.15)

In short, after the original ωk of WENO5 is modified by αk(ω)= gH
k (ω) and Eq. (2.4),

a revised WENO5 will be obtained and referred as WENO-M [3].

2.1.3 WENO-Z [5] and WENO-NS [4]

In Section 3, results of WENO-Z [5] and WENO-NS [4] were used for comparison. For
completeness, a brief introduction about the schemes are given as following. The analy-
ses and more details of the schemes are suggested to Ref. [4, 5].

Both schemes were designed under the framework of WENO by using Eqs. (2.1)-(2.5)
but with new indicator of smoothness different from ISJS. For WENO-Z, Borges et al. [5]
proposed a new IS by introducing

τ5=
∣

∣

∣
ISJS

0 − ISJS
2

∣

∣

∣
. (2.16)
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Then the new indicator ISz and αz
k are defined as

ISz
k =

(

ISJS
k +ε

ISJS
k +τ5+ε

)

, (2.17)

αz
k =

Ck

ISz
k

, (2.18)

where usually ε= 10−40. Furthermore, a concrete form of αz
k was proposed in Ref. [5] as

αz
k=Ck

(

1+(τ5

/

(ISJS
k +ε))

q)
. Regarding to the value of q, Borges et al. [5] pointed out, ”to

recover the fifth-order accuracy at a first-order critical point” of the scheme, q=2, which
is the choice in this paper thereby.

By using the revised αz
k as αk in Eq. (2.4), the final ωk is obtained and the algorithm

of WENO-Z is fulfilled. For implementations of WENO-NS, Ha et al. [4] first introduced
another IS as

ISNS
k = ξ

∣

∣(1−k) f j−2+k+(2k−3) f j−1+k+(2−k) f j+k

∣

∣+
∣

∣ f j−2+k−2 f j−1+k+3 f j+k

∣

∣, (2.19)

where ζ is a coefficient with the value 0.4 in Ref. [4]. Next let

αNS
k =Ck

(

1+
ζ

(

ε+ ISNS
k

)2

)

, (2.20)

where ζ= 1
2

(

|IS0− IS2|
2+gNS

(∣

∣ f j+1− f j

∣

∣

)2)
, gNS (x)= x3

1+x3 , and usually ε=10−40. At last,

using αNS
k as αk in Eq. (2.4), the algorithm of WENO-NS is finished.

2.2 Piecewise polynomial mapping function and the mapped WENO scheme

In Ref. [3], WENO-M has shown its resolution enhancement by numerical examples. It
is a natural thought to check if there are other functions which have better numerical
resolutions.

Before making further analysis, it is necessary to discuss the properties a mapping
function should have. From Eqs. (2.10)-(2.11) and the view of Borges et al. [5], one of the
understanding is that ωk should approach Ck as close as possible provided the computa-
tion is stable. The mathematical interpretation of the understanding is that at the location
ω=Ck, the mapping function should have a distribution close to gk(ω)=Ck or have a flat
profile. It is conceivable that when the function is flatter at ω =Ck, the final value of ω
will be closer to Ck, and the corresponding nonlinear scheme will be more like its linear
counterpart. Usually, such a situation is in favor of resolving subtle structures such as
shear-layer instabilities and vortices in turbulence.

Besides the concerns above, other restrictions exist, e.g., Eqs. (2.12) and (2.13). In
short, the property requirements can be summarized as:
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1. Boundary conditions. This restriction has been described by Eq. (2.12), which makes
the scheme behave like WENO5 when discontinuities are met. Considering the fact
that gk(ω)=ω is just WENO5, the emphasis on the numerical stability implies that
the profile of mapping function should quickly converge towards gk(ω)=ω near
the endpoints of [0,1].

2. Accuracy. This property has been described by Eq. (2.13).

3. Monotonicity. Because the nonlinear weights reflect the smoothness of the solution,
the stencil with unsmooth solution should have less contribution to the derivation
of f̂ j+1/2. Therefore, the mapping function should not change the order of original
weights. This implies the monotonicity should be preserved.

4. The flat profile of the mapping function at ω=Ck. As suggested by Borges et al. [5],
”assignment of larger weights to discontinuous stencils” is favorable for the reso-
lution of the scheme. This statement implies that the nonlinear weight should be
close to its linear counterpart whenever possible, or the distribution of the mapping
function should be close to the horizontal line at ω=Ck. As discussed in the begin-
ning of this section, the flatness of the function is favorable for the resolution of the
scheme providing the computation is stable.

5. The ”nice” appearance, namely, the function has a distribution lying above gk(ω)=
ω at [0,Ck] and underneath it at [Ck,1]. A monotone polynomial might still oscillate
around gk(ω) =ω and violate this property thereby. Taking the interval [Ck,1] as
an example and supposing properties (1)-(3) are satisfied, the function locally lying
above gk(ω)=ω will have a value more far away from gk(ω)=Ck than that of the
one lying underneath it. This property is an optional one and is well preserved by
gH

k [3].

Regarding properties (1) and (4), the following relations can be devised as their math-
ematical interpretations respectively

gk
(1)(0,1)=1, gk

(i)(0,1)=0 for i≥2, (2.21)

gk
(i)(Ck)=0 for i≥3, (2.22)

where Eq. (2.21) corresponds to the part of property (1) except Eq. (2.12).
According to previous discussions, in order to improve resolution it is vital to make

the nonlinear weights ω be close to linear counterparts Ck as much as possible while
they are still eligible for stable shock capturing. Among the properties, item (4) should
be most correlated to the issue. For realizing the property, the mapping function gH

k is
one of the choices, and it is worth to seek other functions through which ω can be more
close to Ck for stable computations with shocks. Firstly it is a natural thought to use
polynomials with various orders as candidates for mapping functions. But after testing,
it is hard to find qualified polynomials which efficiently satisfy all five properties for all
Ck of WENO5. Some practices will be shown in Section 4. The solution to this plight



1424 Q. Li, P. Liu and H. Zhang / Commun. Comput. Phys., 18 (2015), pp. 1417-1444

is the understanding that it is actually unnecessary to use the single function defined in
[0,1] to satisfy Eqs. (2.12)-(2.13) and (2.21)-(2.22). By using piecewise polynomials which
are separately defined at [0,Ck] and [Ck,1], all properties can be easily reached. If the left
and right piecewise functions are denoted as gL

k and gR
k , the derivation conditions are

proposed as follows:

For gL
k ,

gk
L(0)=0, optionally

(

gk
L
)(1)

(0+)=1 and
(

gk
L
)(i)

(0+)=0 for i≥2, (2.23a)

gL
k(Ck)=Ck, gL(i)

k (Ck
−)=0 for i=1,2 and optionally for i≥3. (2.23b)

For gR
k ,

gk
R(1)=1, optionally

(

gk
R
)(1)

(1−)=1 and
(

gk
R
)(i)

(1−)=0 for i≥2, (2.24a)

gR
k(Ck)=Ck, gR(i)

k (Ck
+)=0 for i=1,2 and optionally for i≥3, (2.24b)

where ”optionally” means conditions after it is realized on a case-by-case basis.
It is well-known that a third-order polynomial can be established if necessary parts

in Eq. (2.23) or (2.24) are satisfied. A simple check on the polynomial will show that no
improvement on the property (4) is achieved compared with gH

k (ω). By raising the order
of the polynomial, free parameters appear which can be used to improve properties. Take
gL

k as an example, property (1) can be improved by optional parts in Eq. (2.23a) and
so does property (4) by optional parts in Eq. (2.23b). What is more, the two properties
can be emphasized unevenly, which is accomplished by realizing more or less optional
conditions in Eqs. (2.23a) and (2.23b). A similar process can be done for gR

k . After trying
possible combinations, three polynomials with orders 4-6 are chosen. The choices of the
optional conditions in Eqs. (2.23)-(2.24) are shown in Table 1.

Table 1: The choices of optional conditions.

Order gk
L gk

R Remarks

4
(

gk
L
)(3)

(Ck
−)=0

(

gk
R
)(3)

(Ck
+)=0 Enforce the property (4)

5
(

gk
L
)(3,4)

(Ck
−)=0

(

gk
R
)(3,4)

(Ck
+)=0 Enforce the property (4)

6
(

gk
L
)(1)

(0+)=1
(

gk
R
)(1)

(1−)=1 Enforce both the property (1) and (4)
(

gk
L
)(3,4)

(Ck
−)=0

(

gk
R
)(3,4)

(Ck
+)=0

Letting a=ω/Ck and b=1
/

(Ck−1), the obtained functions can be summarized in
Table 2 after properly rearranging terms. The three piecewise functions are abbreviated
together as PPM or PPMn in this study, where n denotes the order of the polynomial.

Compared with gH
k (ω), piecewise polynomials in the section [0,Ck] are shown in Fig. 1

and those in the section [Ck,1] are shown in Fig. 2. From the figures, it can be shown that:
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Figure 1: Distributions of PPM at [0,Ck].
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Figure 2: Distributions of PPM at [Ck,1].
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Table 2: The piecewise polynomial mapping functions.

Order The mapping function

4 gk
L: Ck

[

1−(a−1)4
]

, gk
R: Ck−b3(ω−Ck)

4

5 gk
L: Ck

[

1+(a−1)5
]

, gk
R: Ck+b4(ω−Ck)

5

6 gk
L: ω

(

1+10a−30a2+35a3−19a4+4a5
)

gk
R: b5









(

10Ck
4−10Ck

3+5Ck
2−Ck

)

+
(

Ck
5−25Ck

4
)

ω+
(

10Ck
4+50Ck

3
)

ω2

−
(

30Ck
3+50Ck

2
)

ω3+
(

35Ck
2+25Ck

)

ω4−(19Ck+5)ω5+4ω6









1. All PPM functions distribute more flatly at Ck than gH
k (ω), or the revised ω will be

more close to Ck when the original ω has a value close to Ck. This indicates that the
aforementioned motivation is realized.

2. PPM5 distributes most flatly at Ck and encloses other functions by itself and gk(ω)=
ω at nearly all cases except Ck = 0.1. The distribution indicates the corresponding
nonlinear weights will be relatively closer to Ck and therefore is potentially favor-
able for resolution improvement.

3. PPM6 shows a flatter distribution at Ck when compared with gH
k (ω) and the quick-

est convergence to gk(ω) =ω at the two endpoints of [0,1], which implies an em-
phasis on stability while still concerning the resolution.

4. PPM4 falls in an intermediate position between PPM5 and PPM6.

Using similar procedures as WENO-M [3], i.e., re-computing ωk by Eq. (2.4) after re-
defining αk =PPM(ωk), a new fifth-order WENO scheme can be obtained. According to
the order of PPM, the corresponding schemes are called as WENO-PPM4, WENO-PPM5,
and WENO-PPM6 respectively.

In the next sections, typical numerical examples are used to show the performance
of WENO-PPMn schemes and comparisons among themselves. In addition, results of
WENO-PPMn are compared to that of WENO5, WENO-M, WENO-Z and WENO-NS. In
Eq. (2.5) of above schemes, ε=10−40 except ε=10−16 for WENO5.

2.3 The property of the convergence order

Following the commonly used way [3–5], the linear advection problem with smooth and
discontinuous initial distributions is chosen to show the convergence order of WENO-
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PPM5. The linear advection equation is

ut+ux =0,

where x∈ [−1,1]. Standard fourth-order Runge-Kutta scheme was used to discretize the
temporal term, and the time step is chosen as (∆x)5/4 to minimize the influence of tem-
poral errors. The value of ε in various schemes has been given in previous section.

(1) The smooth initial distribution case

The initial condition is

u(x,t=0)=sin

(

πx−
sin(πx)

π

)

.

The computation is advanced to t=2. In Table 3, numerical errors and corresponding
orders are shown with the comparison of various schemes, namely, WENO5, WENO-M,
WENO-Z, WENO-NS, and WENO5 using ideal linear weights. In the table, ”N” denotes
the grid number.

Table 3: Convergence properties of various schemes with the smooth initial condition.

N WENO5 WENO-M WENO-Z

L2 (order) L∞ (order) L2 (order) L∞ (order) L2 (order) L∞ (order)

10 7.36e-2(- -) 1.36e-1(- -) 4.54e-2(- -) 9.00e-2(- -) 3.37e-2(- -) 5.79e-2(- -)

20 6.07e-3(3.60) 1.41e-2(3.27) 2.41e-3(4.24) 5.61e-3(4.00) 1.92e-3(4.13) 4.10e-3(3.82)

40 4.77e-4(3.67) 1.10e-3(3.68) 9.58e-5(4.65) 2.12e-4(4.73) 9.35e-5(4.36) 2.26e-4(4.18)

80 2.56e-5(4.22) 8.85e-5(3.64) 3.07e-6(4.96) 6.69e-6(4.98) 3.06e-6(4.93) 6.69e-6(5.08)

160 1.62e-6(3.98) 8.15e-6(3.44) 9.66e-8(4.99) 2.10e-7(4.99) 9.66e-8(4.99) 2.10e-7(4.99)

320 1.19e-7(3.76) 8.27e-7(3.30) 3.02e-9(5.00) 6.55e-9(5.00) 3.02e-9(5.00) 6.55e-9(5.00)

640 9.19e-9(3.69) 8.64e-8(3.26) 9.43e-11(5.00) 2.05e-10(5.00) 9.43e-11(5.00) 2.05e-10(5.00)

WENO-NS WENO-PPM5 Ideal weights

10 4.59e-2(- -) 8.94e-2(- -) 5.34e-2(- -) 1.01e-1(- -) 4.96e-2(- -) 9.03e-2(- -)

20 2.84e-3(4.01) 6.24e-3(3.84) 3.00e-3(4.15) 5.98e-3(4.07) 2.89e-3(4.10) 5.98e-3(3.92)

40 9.76e-5(4.86) 2.07e-4(4.91) 9.93e-5(4.91) 2.11e-4(4.82) 9.80e-5(4.88) 2.12e-4(4.82)

80 3.08e-6(4.99) 6.68e-6(4.95) 3.08e-6(5.01) 6.69e-6(4.98) 3.08e-6(4.99) 6.69e-6(4.99)

160 9.67e-8(4.99) 2.10e-7(4.99) 9.67e-8(4.99) 2.10e-7(4.99) 9.67e-8(4.99) 2.10e-7(4.99)

320 3.02e-9(5.00) 6.55e-9(5.00) 3.02e-9(5.00) 6.55e-9(5.00) 3.01e-9(5.01) 6.55e-9(5.00)

640 9.43e-11(5.00) 2.05e-10(5.00) 9.43e-11(5.00) 2.05e-10(5.00) 9.43e-11(5.00) 2.05e-10(5.00)

Unsurprisingly, WENO-PPM5 has gained the fifth-order convergence like its counter-
parts except WENO5. Carefully comparing the L∞ order of nonlinear schemes with that
of the linear one, it can be found that the order of WENO-PPM5 is the closest to that of
the linear scheme on the intermediate grid number 40 and 80.
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(2) The discontinuous initial distribution case

The initial condition is

u0(x)=

{

−sin(πx)− 1
2 x3, if −1≤ x<0,

−sin(πx)− 1
2 x3+1, if 0≤ x≤1.

The computation was conducted with ∆x=0.01 and run to t=2. Fig. 3 shows the result
of WENO-PPM5 with the comparison with WENO5, WENO-M, WENO-Z and WENO-
NS. Generally, various schemes behave similarly at the smooth region, while WENO-
PPM5 shows a slightly sharper distribution at the discontinuity.
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Figure 3: Numerical solutions of the linear advection equation with discontinuous initial condition.

In more detail, nonlinear weights are shown in Fig. 4 together with the linear ones.
All weights have small values around the discontinuity (x≈0) but with different quantity
levels for different schemes. In addition, WENO5 has the smallest values at x≈ 0 while
WENO-NS has the largest ones. But as said before, too large weights near the disconti-
nuity implies the risk of numerical instability, which might make computations blow up
at practical supersonic problems.

3 Numerical tests

Typical 1-D and 2-D problems are used to test the piecewise polynomial mapping method.
In all cases, Steger-Warming splitting, characteristic projection and characteristic vari-
ables were adopted. As regard to the temporal algorithm, the third-order TVD Runge-
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Figure 4: The distribution of the ideal weights Ck and weights ωk of various schemes.

Kutta scheme was used for unsteady problems in case (1)-(3) and (5), and LU-SGS was
used for the steady one in case (4).

(1) Shu-Osher problem

The range of x is [−5,5] and the initial conditions about the density, velocity and
pressure are

(ρ,u,p)=

{

(3,857143,2.629369,10.3333), x<−4,

(1+0.2sin(5x),0,1), x≥−4.

The computation is conducted using 200 uniform grid points and runs up to t=1.8 with
∆t=0.003. The comparison of three WENO-PPMn schemes is shown in Fig. 5, where the
result of WENO5 on 1600 grids is referenced as the ”exact” solution. Relatively speak-
ing, WENO-PPM5, which is with particular emphasis on resolution (see Table 1 and
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Figure 5: The comparison on density distribution of WENO-PPMn schemes.
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Figure 6: The comparison on density distribution of various WENO type schemes.

Figs. 1-2), shows the best description of the density oscillations. WENO-PPM6, which has
more consideration on the stability, shows the least resolution; while the performance of
WENO-PPM4 is very close to that of WENO-PPM5.

Next, comparisons are made among WENO5, WENO-M, WENO-Z, WENO-NS, and
WENO-PPM5 in Fig. 6. WENO-PPM5 shows better performance than WENO-M at the
region [0.7,1.2] while compared with WENO-Z, the scheme first shows a slightly better
resolution at around x= 0.8 but becomes relatively less resolved after x≈ 1. Consistent
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with Ref. [4], WENO-NS shows the best resolution. Although the performance of WENO-
PPMn schemes is not the best in this case, the best one WENO-NS fails to pass the sub-
sequent test of double-Mach reflection when Steger-Warming flux splitting is used. As it
will be seen, WENO-PPMn show improved resolution in 2-D computations, where new
mapping functions are thought to make nonlinear weights to be more close to their linear
counterparts.

(2) Riemann problem

In Ref. [6], a series of 2-D Riemann problems was proposed to check the performance
of positive schemes, which later became favorable cases to test the resolution of numerical
methods [7]. Configuration 13 in Ref. [6], which is sketched in Fig. 7, is chosen here for
testing. The initial conditions of the case are:

Zone 1: ρ1=1, p1=1, u1=0, v1=−0.3;

Zone 2: ρ2=2, p2=1, u2=0, v2=0.3;

Zone 3: ρ3=1.0625, p3=0.4, u3=0, v3 =0.8145;

Zone 4: ρ4=0.5313, p4=0.4, u4=0, v4 =0.4276.

Figure 7: The schematic of Riemann problem.

The Euler equation is solved on 1200×1200 grids, and the computations proceed to
t=0.3 at ∆t=0.00015. The investigation in this case is focused on the description of insta-
bility of the slip line, which is indicated by a box in Fig. 8. The following schemes were
tested: WENO5, WENO-M, WENO-Z, WENO-NS, and WENO-PPM4 to WENO-PPM6.
In addition, the results of WENO7 and a hybrid compact/WENO scheme from Ref. [7]
are directly cited here for comparison. The results are shown in Figs. 8-14 except those of
WENO5 and WENO-Z. Results of these two latter schemes were very similar to that of
WENO-M and are omitted. From the figures, the following can be observed. WENO-M
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Figure 12: The density contour of WENO-PPM6.
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Figure 13: The density contour of WENO-7 [7]. Figure 14: The density contour of the hybrid com-
pact/WENO scheme by Pirozzoli [7].

(including WENO5 and WENO-Z) fails to resolve the instability of the slip line under
current grids. Although WENO-NS has resolved the instability to some extent, its res-
olution is lower than WENO-PPMn schemes. The three WENO-PPMn schemes show
similar performance, while WENO-PPM4 seems to give a slightly early start of the in-
stability. WENO7, with wider stencils, also resolved the instability [7], and the unstable
structures appear to have larger length scale but smaller wave numbers when compared
with WENO-PPM4 and -PPM5. The hybrid compact/WENO scheme [7] gives structures
with the largest length scale and the smallest wave numbers. However, obvious numeri-
cal oscillations are observed in Fig. 14, which are unfavorable for the fidelity of the result.

(3) Double-Mach reflection by a strong shock

This problem is commonly used to show the resolution of numerical schemes. As
described in Ref. [2], the computational domain is chosen to be [0,4]×[0,1]. The reflection
wall is placed at the bottom of the domain starting from x=1/6. The initial condition is a
right-moving Mach 10 shock positioned at {x=1/6,y=0} at 60◦ to the x-axis. In order to
describe the instability of the slip line generated from the triple point of the shock, a dense
grid with 1920×480 cells is used. The computation runs up to t=0.2 with ∆t=0.000025,
and WENO5, WENO-M, WENO-Z, WENO-NS and WENO-PPMn are tested. Perhaps
due to the small dissipation of Steger-Warming splitting, the computation of WENO-NS
blew up. The density contours of WENO5, WENO-M, WENO-Z and WENO-PPM5 are
shown in Fig. 15.

There are usually two concerns in this issue. One is the instability of the slip line in
the region marked by dashed box in Fig. 15(a). The other is the companion structures
after the primary reflection shock shown in the solid-lined box. It is evident that WENO5
cannot clearly describe the instability of the shear layer in the dashed box under such
dense grids. For WENO-M, the situation is improved to some extent and some struc-
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Figure 15: Density contours by different schemes for double Mach reflection at t=0.2.

tures are captured upstream of the location where the reflection shock intersects with the
slip line. WENO-Z gives an earlier occurrence of wavy structures which approximately
start at y = 0.31. The result of WENO-PPM5 is used as the representative of WENO-
PPMn schemes, which shows an instability occurrence at y= 0.29∼ 0.3. From Figs. 15,
WENO-PPM5 resolves more unstable structures than WENO-M but less than WENO-Z.
On the other hand, the unstable structures by WENO-PPM5 seem to be stronger and have
larger oscillation amplitude than those of WENO-Z. This point is shown in Fig. 17 by the
density distribution along the slip line at x-range [2.384,2.647] obtained by interpolation.
Regarding the companion structure, it can be seen that WENO-PPM5 gives a description
with more complexities. What is more, a vortex pairing is described by WENO-PPM5,
the process of which is shown in Fig. 16 and highlighted in the box in Figs. 15(d) and
16(a) and (b). On checking, such dynamics are absent in simulations of WENO-M and
WENO-Z.

(4) Hypersonic flows of the sharp double cone

This case is often used to test predictions on heat flux in a shock/boundary-layer in-
teraction. The geometry is demonstrated in the lower right inset of Fig. 18. The inflow
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(a) t=0.175 (b) t=0.185

Figure 16: Density contour by WENO-PPM5 at two instances before t=0.2.
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Figure 17: Comparisons of density distribution along the slip line.

conditions are: M∞ =9.59, T∞ =185.6 K, Tw =293.3 K, Re=139436 m−1. The grid distri-
bution is nstream×nnormal = 256×148. WENO5, WENO-M and WENO-PPM5 are used in
computations, while the numerical and experimental results from Gnoffo [11] are cited
for reference. The grids in the computation of Ref. [11] are 512×256.

Fig. 18 shows the wave and vortex structures by WENO-PPM5. The length unit is
meter. The density gradient contour indicates that a train of reflected shocks which is
generated between the layer formed by the slip line and the second cone surface is re-
solved by the computation. In the upper inset of the figure, five vortices are resolved
by the scheme, which indicates the capability of WENO-PPM5 to describe the complex
hypersonic separation. Quantitative comparison of the heat flux is given in Fig. 19 by
Stanton number, where all fifth-order schemes show quite similar heat flux predictions.
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Figure 18: Contour of the magnitude of density gradient of WENO-PPM5.

x

St

0.5 1 1.5 2
0

0.05

0.1

0.15 WENO-PPM5
WENO-M
WENO5
Gnoffo - comput.
Gnoffo - exp.

Figure 19: Heat flux of numerical predictions and experiment [11].

(5) Shock-vortex interaction

The case studied here regards a strong shock with the Mach number Ms=3 interacting
with a strong vortex, which is similar to ones in Ref. [5] and [12]. The governing equations
are Euler equations. A coordinate system is fixed with a shock wave for simplicity, and
an isentropic vortex is superimposed ahead of the shock wave as [12]:

uθ =Γ|~r−~r0|
/

rce

[

(1−|~r−~r0|
2)
/

2
]

,

p(r)=
1

γM∞
2

[

1−
γ−1

2
Γ2exp(1−|~r−~r0|

2)

]γ/(γ−1)

,

ρ(r)=

[

1−
γ−1

2
Γ2exp(1−|~r−~r0|

2)

]1/(γ−1)

,
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where uθ denotes the tangential velocity of the vortex,~r0=(4,0) represents the initial po-
sition of the vortex, γ=1.4, p(r) and ρ(r) are initial distributions of pressure and density
ahead of the shock at x = 0, and Γ is the vortex strength with the value 0.4. The above
three relations are non-dimensionalized with the velocity u∞, ρ∞u2

∞, and ρ∞ of the inflow.
The initial flow-field after the shock can be obtained by Rankine-Hugoniot relations. The
computational domain is [−20,10]×[−15,15], and a uniform grid is used with the num-
ber: 1501×1501. The computation runs to t=14 with ∆t=0.002. Five schemes were used
as: WENO5, WENO-M, WENO-Z, WENO-NS, and WENO-PPM5.

In Fig. 20, density contours of fives schemes are given, and zoomed windows are used
to show a small vortex roll-up generated by the interaction. Relatively speaking, WENO5
gives the most smeared description about the roll-up, while WENO-M and WENO-Z give
the moderately resolved ones. It is apparent that WENO-NS and WENO-PPM5 present
richest descriptions about the roll-up structures. In addition, checks are made on the
second vertical disturbing wave approximately at x =−3.6, which is generated by the
adaption of Euler solver to initial shock wave discontinuity. It appears that the disturb-
ing wave by WENO-NS shows features of numerical oscillations, while that by WENO-
PPM5 still retains the form as that of WENO-Z and WENO-M. The result is consistent to
our previous experiences that WENO-NS has less numerical stability and will be more
susceptible of computation failure in cases with strong shocks.

4 Discussions

As mentioned in Section 3, it is hard for a single polynomial spanning over [0,1] to effi-
ciently fulfill five properties for all Ck of WENO5. Besides, it is natural to ask the appli-
cation potential of PPM for symmetric WENO schemes. Discussions in this section relate
to these aspects.

4.1 The possibility of single polynomial on [0,1] as mapping function

By using Eqs. (2.12) and (2.13), a fourth-order polynomial can be uniquely determined
as b1(a1ω+a2ω2+a3ω+a4ω4), where b1 =1/(Ck−1)2, a1 =3−5Ck+C2

k , a2 =3(−1+Ck+
C2

k)/Ck, a3 =(1+Ck−5C2
k )/C2

k and a4 =(−1+2Ck)/C2
k . It can be shown that the polyno-

mial will violate property (3) at Ck = 0.1 and property (5) at Ck = 0.3 as summarized in
Section 2.2. Theoretically, violations can be relieved by raising the order of the polyno-
mial and using new polynomial coefficients to fulfill the properties. Such practices are
introduced subsequently according to Ck. The obtained polynomial is referred as SPM or
SPMn (Ck), where n denotes the order.

(a) Ck=0.1

In order to achieve monotonicity (property (3)) and have a ”nice” appearance (prop-
erty (5)), our practices show that the order of the polynomial should start from eleven.
Regarding the polynomial derivation, Eq. (2.21) at ω = 1 should be used for i = 1,··· ,8



1438 Q. Li, P. Liu and H. Zhang / Commun. Comput. Phys., 18 (2015), pp. 1417-1444

X

Y

-15 -10 -5 0
-10

-5

0

5

10
1.05 2.60949 4.16899

(a) WENO5

X

Y

-15 -10 -5 0
-10

-5

0

5

10
1.05 2.60949 4.16899

(b) WENO-M

X

Y

-15 -10 -5 0
-10

-5

0

5

10
1.05 2.60949 4.16899

(c) WENO-Z

X

Y

-15 -10 -5 0
-10

-5

0

5

10
1.05 2.60949 4.16899

(d) WENO-NS

X

Y

-15 -10 -5 0
-10

-5

0

5

10
1.05 2.60949 4.16899

(e) WENO-PPMS

Figure 20: Density contours of shock-vortex interaction by different scheme at t=14.
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Figure 21: Mapping functions for Ck=0.1.

besides Eqs. (2.12) and (2.13). The number of equations can specify a twelfth-order poly-
nomial but the outcome turns out to an eleventh-order one, which is shown in Fig. 21.
From the figure, the function falls within the region enclosed by gk(ω)=ω and gH

k , and
shows a fast convergence towards gk(ω)=ω at [Ck,1].

(b) Ck=0.3

For this situation, the fifth-order polynomial is found to be able to achieve properties
(3) and (5), and its derivation is by using Eqs. (2.12) and (2.13) plus Eq. (2.21) at ω=1 for
i=1. The corresponding SPM5(0.3) is shown in Fig. 22. From the figure, the polynomial
is inferior to gH

k and PPM5 in the sense of property (4).

As an experiment, a polynomial with twelfth-order is tested to see if property (4)
could be improved by appealing to Eq. (2.22). From trial and error, SPM12(0.3) with the
preservation of monotonicity is obtained by imposing Eqs. (2.12), (2.13) and (2.21) at ω=0
and 1 for i=1, Eq. (2.21) at ω=1 for i=2,··· ,4, and Eq. (2.22) for i=3,··· ,5. The distribution
of SPM12(0.3) is also shown in Fig. 22. Despite the obvious increase of computation due
to the extra higher-order terms, the polynomial is still less flat than PPM5 at ω=Ck.

(c) Ck=0.6

For this situation, SPM4(Ck) is found to be monotone and have a ”nice” appearance.
From Fig. 23, the function resembles gH

k . Similarly, in pursuit of better performance on
property (4), a twelfth-order SPW12(0.6) is derived by satisfying Eq. (2.21) at ω = 0 for
i=1 and Eq. (2.22) for i=3,··· ,9. The distribution of the function is also shown in Fig. 23.
The figure shows that SPW12(0.6) has largely increased the flatness of the function at Ck

(even a bit flatter than PPM5), which implies the potential of resolution enhancement.
Nevertheless, the improvement is accomplished with the increase of computation.
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Figure 22: Mapping functions for Ck=0.3.
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Figure 23: Mapping functions for Ck=0.6.

Among polynomials with order higher than four, a fifth-order polynomial is found to
be unexpectedly flatter at ω =Ck than several polynomials with higher order such as 6

and 7. The function is first derived by g
(3)
k (Ck)=0 besides Eqs. (2.12) and (2.13). Careful

checking shows the function is slightly non-monotone prior to ω = Ck. This flaw can

be overcome by letting g
(3)
k (Ck) have a certain non-zero value so that the first derivative
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of the polynomial can only be zero at Ck. The value is solved as 9175/564−(25/188)×
79050.5 and the corresponding function is SPM5(0.6) shown in Fig. 23. From the figure,
SPM5(0.6) does not show a distinctly flatter profile than that of PPM5.

In summary, the investigation on a single polynomial on [0,1] to serve as a mapping
function proves that the fifth-order SPM cannot satisfy the property (3) and (5) at all Ck;
although the twelfth-order SPM can satisfy all the properties, it still does not have a flatter
profile at all Ck than that of PPM5, while its computational cost is definitely increased. So
it is preferred to using PPM5 as the mapping function other than SPM.

4.2 The application potential of PPM5 for symmetric WENO5 scheme

It is known that the fifth-order symmetric WENO scheme (SWENO5) can have adjustable
dissipation [8]. Thus, it is necessary to check if the PPMn functions could be used for
SWENO5. The formulation of SWENO5 can be described using Eq. (2.3) by r′ = r. Un-
der the framework of WENO, nonlinear weights are still defined by Eq. (2.4) except their
linear counterparts are: Ck|k=0,···,4=(−C3+1/10,−3C3+3/5,3C3+3/10,C3); smoothness

indicators are still described by Eq. (2.9) with the addition of ISJS
3 =(13/12)( f j+1−2 f j+2+

f j+3)
2+(1/4)(5 f j+1−8 f j+2+3 f j+3)

2 [2]. In SWENO5, C3 is a free parameter which causes
the linear scheme to have varying dissipation. For example, when C3 = 0, the linear
scheme is the linear WENO5, and when C3 = 1/20, a sixth-order central scheme results.
Following the same idea of WENO-M, the symmetric version of WENO-M and WENO-
PPMn can be obtained, which are referred as SWENO-M and SWENO-PPMn respec-
tively.

Prior to the implementation of SWENO5, SWENO-M and SWENO-PPM, C3 should
be specified first. Experiences have shown that appropriate numerical dissipation is a
necessity for numerical stability. The relationship of C3 with the dissipation of SWENO5
is that the dissipation of the scheme at the scaled wave number π is − 16

15(1−20C3) [8].
Empirically, selected numerical cases can be used to specify the largest allowable value of
C3 by checking if it can make computations essentially stable. The case used in this study
is the supersonic shock/boundary layer interaction [10], which was usually used for val-
idations. The free stream condition of the problem is: M∞=2, T∞=293K, Re∞=2.96×105,
and the wall is adiabatic. The physical domain is: 0≤x≤2.02 and 0≤y≤1.3. An incident
shock is introduced at the upper left corner at the angle 32.585◦, which results in reflection
and interaction afterwards. In addition, a separation bubble is generated at the interac-
tion zone. By checking applicable values from 0 to 1/20 with an increment of 1/320, the
largest C3 for SWENO5 is found as 1/64, beyond which the predicted pressure coefficient
oscillates. After C3 is specified, SWENO-M and SWENO-PPM5 are tested. The computa-
tions show that both pressure distributions and separation bubbles have oscillations. The
former is shown in Fig. 24 and the latter in Fig. 25 where results of SWENO-PPM5 are
shown as representatives. In the figures, results of SWENO5 are utilized for comparison.
Considering that SWENO-M and SWENO-PPM5 will become WENO5 when C3=0, non-
oscillatory results should be available if C3 is small enough. But for the current choice of
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Figure 24: Pressure distribution using different schemes.

C3=1/64, the basis of two former schemes, i.e., SWENO5, quite resembles WENO5. Nu-
merical tests have shown the difference by further decreasing C3 is not obvious. On the
other hand, the implementation of symmetric WENO leads to an obvious computation
increase. Therefore, it is not suggested to use SWENO-PPM5 other than WENO-PPM5.

5 Conclusions

The mapping function method [3] was investigated for the purpose of resolution en-
hancement with the preservation of numerical stability. An idea of piecewise polynomial
mapping function is introduced to derive new mapping functions. The advantage of the
idea is that the polynomial functions can be designed to have a controllable and more flat
profile at the location of Ck than that of Henrick et al. [3], and such property is numeri-
cally favorable for resolution enhancement. Three polynomial functions are constructed
thereby and corresponding schemes are referred as WENO-PPM4, -PPM5 and WENO-
PPM6. 1-D and 2-D examples are tested with the comparison with WENO-M, WENO-Z
and WENO-NS. Although the performance of WENO-PPMn is not prominent in the 1-D
Shu-Osher problem, they perform better in 2-D Riemann and the double Mach reflection
problems and show good resolution capability. Specifically, only WENO-PPMn schemes
resolve the vortex-pairing phenomenon.

The reason of not suggesting single polynomials as mapping functions is also dis-
cussed. Single polynomial functions are found to be insufficient to satisfy the properties
in Section 2.2 than PPM5. On the other hand, the attempt in using PPM5 for symmetric
WENO shows that if SWENO-PPM5 does not sufficiently resemble WENO5 (or if C3 is
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Figure 25: The instantaneous streamlines of different schemes with C3=1/64.

not small enough), the result will show numerical oscillations. Therefore, PPM5 is not
suggested for SWENO5.

Although WENO-PPMn schemes have overall similar performance, WENO-PPM5
appears to have the flattest profile at Ck, which is theoretically more favorable of reso-
lution enhancement. Therefore WENO-PPM5 is tentatively suggested for applications.
Additionally, it can be seen that PPM5 satisfy the accuracy requirement of WENO7 [2]
and theoretically could be used for its improvement. On the other hand, PPM5 may also
be used for WENO3 and SWEMO3 for potential improvement.
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