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Abstract. In this paper, we propose a heat jet approach for atomic simulations at fi-
nite temperature. Thermal fluctuations are injected into an atomic subsystem from its
boundaries, without modifying the governing equations for the interior domain. More
precisely, we design a two way local boundary condition, and take the incoming part
of a phonon representation for thermal fluctuation input. In this way, non-thermal
wave propagation simulations are effectively performed at finite temperature. We fur-
ther apply this approach to nonlinear chains with the Morse potential. Chains with
model parameters fitted to carbon and gold are simulated at room temperature with
fidelity.
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1 Introduction

Atomic simulations, or molecular dynamics simulations, have become instrumental for
materials science and engineering at nano-scale or sub-micron scale. When mechanical
behaviors are considered, technical and conceptual difficulties arise and make finite tem-
perature simulations a challenging task. As the simulated system lies away from thermal
equilibrium, both theoretical understanding and numerical treatments are still under ac-
tive investigations in statistical and computational physics.

In a finite temperature atomic simulation, even the definition of temperature can be
sophisticated. Consider an atomic lattice shown schematically in Fig. 1. The vast sur-
rounding region represents a heat bath at a certain target temperature. When there are
purely thermal fluctuations, the lattice temperature may be calculated from the tempo-
ral/ensemble average of the kinetic energy. When non-thermal motion presents, such as
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Figure 1: Schematic plot of an atomic lattice: solid dots represent atomic subsystem, gray dots represent
boundary atoms, hollow circles represent surrounding atoms, and heat bath is around the outer boundary of the
lattice.

in dynamical crack tip propagation, one can hardly decompose the whole motion into a
crack part and a thermal part, as they both contain wave components in the full band.
In a practical atomic simulation, one usually treats a small subsystem (enclosed by the
interior square here) where important physics or mechanical behaviors take place, in or-
der to reduce the numerical cost. Then the deviation between the true temperature and
the calculated average kinetic energy can be big, and considerably contaminate the lattice
dynamics through nonlinear interactions [1].

In this paper, we pursue a humble goal for finite temperature atomic simulations.
While the exact dynamics of the subsystem should be obtained from a finite temperature
simulation for the entire lattice, it may be reproduced/approximated if a suitable treat-
ment is supplemented at its numerical boundaries. Here we aim at designing a treatment
to accurately resolve non-thermal waves if the subsystem is at zero temperature; mean-
while to maintain a target temperature if there is no non-thermal motion. We assert that
a finite temperature atomic simulation may be realized by this algorithm, with both the
non-thermal motion and the thermal fluctuations included simultaneously.

There are extensive studies in the literature for both aspects, yet separately. The ac-
curate resolution at zero temperature may be reached by using artificial boundary con-
ditions in atomic simulations, or interfacial treatments for concurrent multiscale simu-
lations [2]. We remark that several concurrent multiscale algorithms tackles with finite
temperature, e.g., [3–7]. On the other hand, there are extensive studies on heat baths [8].
To name a few, one may simply rescale the velocity [9], to refresh the velocity of a ran-
domly chosen atom [10], to add a source term together with a damping term satisfying
the fluctuation-dissipation relation [11], or to add additional degrees of freedom feeding
back acceleration or deceleration [12, 13]. These heat baths modify the dynamics of inte-
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rior atoms in the subsystem, according to an estimation of the temperature deviation.
Therefore, when a non-thermal motion presents in the subsystem, it is over-damped
along with the temperature overestimation. In contrast, a phonon heat bath was pro-
posed for linear lattices, where the thermal fluctuations are input at the boundaries [14].
Making use of a phonon representation of thermal fluctuations, this approach only mod-
ifies the force term at the boundary atoms via time history convolutions. It then allows
non-thermal motions added on top of the thermal ones, and hence realizes reliable fi-
nite temperature atomic simulations, e.g., for a moving dislocation [15]. This boundary
treatment involves lattice Green’s functions, which have been explored in [16, 17], etc.

In this paper, we propose a heat jet approach for finite temperature atomic simula-
tions from a wave point of view. Same as the phonon heat bath approach, we inject
thermal fluctuations at the boundary atoms only, yet by a source term in a two way
boundary condition that relates nearby atomic velocities and displacements. The two
way boundary condition is similar to that proposed in [18], yet based on a matching
boundary condition [19]. Like a wave-diode, it allows efficient transmission for thermal
and non-thermal waves outward from the atomic subsystem, as well as effective injec-
tion of incoming thermal fluctuations. Meanwhile, the source term is formed with the
incoming part of the phonon representation for thermal fluctuations. By avoiding the
expensive time convolutions, we considerably enhance the numerical efficiency, and do
not require the system to be linear. Moreover, the boundary treatment and the source
term are developed separately. If any other representation of the thermal fluctuations is
available, we may use it to substitute the phonon representation. This adaptiveness and
the numerical efficiency provide a better chance for extending the heat jet approach to
nonlinear lattices and multidimensional lattices.

In the following, we illustrate the heat jet approach for linear harmonic lattice in one
space dimension in Section 2. Then in Section 3, we apply it to nonlinear lattices, and
explore numerically the effective temperature range for chains with model parameters
fitted to carbon and gold. Some discussions are made in Section 4.

2 Linear lattice

2.1 Formulation

We consider a linear harmonic lattice governed by the Newton equation

mün= k(un−1−2un+un+1). (2.1)

Here m is the mass, and k is the elastic constant. We rescale the displacement un by the
lattice constant ha, and time by

√
m/k. The non-dimensionalised equation reads

ün=un−1−2un+un+1. (2.2)

While the entire lattice includes atoms numbered for all integers, we simulate a sub-
system that contains atoms numbered from 1 to N. Following [18] and [19], we construct
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a two way boundary condition based on a second order Newton-Taylor type matching
boundary condition.

A monochromatic left-going wave at a wave number ξ∈[0,π] takes the form of uk(t)∼
ei(ωt+ξk), with a dispersion relation

ω=2sin
ξ

2
. (2.3)

With a matching boundary condition, we relate the displacements and velocities near
the boundary in a linear form.

P

∑
p=0

αpu̇p−
P

∑
p=0

βpup=0. (2.4)

Substituting the wave form and discarding a common factor, we define a matching
residual function

∆(ξ)= iω(ξ)
P

∑
p=0

αpeiξ p−
P

∑
p=0

βpeiξ p. (2.5)

This residual function measures the inconsistency for imposing the linear relation
(2.4) on a left-going wave. For a particular choice of parameters {β1,··· ,βP,α1,··· ,αP},
transparent transmission is reached at a certain wave number if the residual function
vanishes there. As long waves usually dominate the energy band, we take P = 3 and
require ∆(ξ)= o(ξ2) and ∆(π/2)=0. After some calculations, this amounts to

u̇1=−α2u̇2−u̇3+β1u1+β3u3, (2.6)

with α2=2+2
√

2,β1=−β3=−(2+
√

2).
Substituting the wave form un = ei(ωt+ξn)+R(ξ)ei(ωt−ξn) into (2.6), the reflection coef-

ficient may be found as

R(ξ)=− iω
[

eiξ+α2ei2ξ+ei3ξ
]

+β3(eiξ−ei3ξ)

iω [e−iξ+α2e−i2ξ+e−i3ξ ]+β3(e−iξ−e−i3ξ)
. (2.7)

As seen from Fig. 2, the boundary condition well suppresses reflections, particularly
effective over the wave number interval [0,π/2]. The reflection coefficient is less than 1
over the whole first Brillouin zone, indicating stability [20].

Next, we design a two way boundary condition based on this matching boundary
condition. Assuming that a right-going wave is input in the form of wl(t) (l = 1,2,3) for
the l-th atom, we replace ul by ul−wl in (2.6) and obtain

u̇1=−α2u̇2−u̇3+β3(u3−u1)+ f (t), (2.8)

f (t)= ẇ1+α2ẇ2+ẇ3−β3(w3−w1). (2.9)
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Figure 2: Reflection coefficient of matching boundary condition for harmonic lattice.

To simplify theoretical analysis, we discuss the property of a semi-infinite chain,
namely, N→∞. If the initial profile is consistent with the right-going wave input, namely,
ul(0)=wl(0),u̇l(0)= ẇl(0), then the solution is ul(t)=wl(t), reproducing the right-going
wave precisely.

On the other hand, if the source term f does not cleanly represent an incoming wave,
e.g., we consider a normal mode in the wrong direction, vl(t)∼ ei(ωt+ξl) for l=1,2,3, and
take

f (t)= v̇1+α2v̇2+ v̇3−β3(v3−v1). (2.10)

Direct calculation shows that the solution to the semi-infinite chain reads

un(t)∼
iω

[

eiξ+α2ei2ξ+ei3ξ
]

+β3(eiξ−ei3ξ)

iω [e−iξ+α2e−i2ξ+e−i3ξ ]+β3(e−iξ−e−i3ξ)
ei(ωt−ξn). (2.11)

The amplitude amplification factor is precisely −R(ξ), which is small by design.

From above discussions, the two way boundary condition acts like a wave-diode, as
it allows both exact injection and effective wave propagation out of the subsystem, and
resists improper directional sources.

Next, we design a suitable input at the boundary. It is well known that in a harmonic
chain, thermal fluctuations at temperature T take a phonon (normal mode) representation
as follows [14, 21]

un(t)=∑
p

a+p cos(ωpt+φ+
p )cosξpn+a−p cos(ωpt+φ−

p )sinξpn. (2.12)

Here for a chain with N atoms, ξp =2πp/N is the wave number, and ωp =2sin
ξp

2 is the
frequency. In the following, if not specified otherwise, we take ξp within the interval
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[π/8,7π/8] with a step size ∆ξ=π/100. This gives Nc=76 normal modes, for which the
amplitude follows the Gibbs distribution with [14, 21]

< (a±p )
2
>=

2T

Ncω2
p

, (2.13)

where the temperature is rescaled by kh2
a/kB, with the Boltzmann constant kB = 1.38×

10−23J/K.
After some manipulations, we find that the right-going wave component in (2.12) is

ãpcos(ωpt−ξpn+ϕp), with

ã2
p=

1

4

[

(a+p )
2+(a−p )

2+2a+p a−p sin(φ+
p −φ−

p )
]

, (2.14)

ϕp=arctan
a+p sinφ+

p +a−p cosφ−
p

a+p cosφ+
p −a−p sinφ−

p
. (2.15)

As the phases φ±
p lie randomly between [0,2π], it holds that ϕp is a random phase in

the same interval, and

< ã2
p >=

T

Ncω2
p

. (2.16)

In the simulations, we simply take the normalized amplitude ãp =
√

T/Ncω2
p.

The right boundary is treated in the same manner. If the target boundary tempera-
tures are TL and TR, we summarize the complete governing system as follows

ün=un−1−2un+un+1, n=2,··· ,N−1, (2.17)

u̇1=−α1u̇2−u̇3+β3(u3−u1)+ f L, (2.18)

u̇N =−α1u̇N−1−u̇N−2+β3(uN−2−uN)+ f R, (2.19)

f L = ẇ1+α1ẇ2+ẇ3−β3(w3−w1), (2.20)

f R = v̇N+α1v̇N−1+ v̇N−2−β3(vN−2−vN), (2.21)

wl =∑
p

√

TL

Ncω2
p

cos(ωpt−ξpl+ϕL
p), (2.22)

vl =∑
p

√

TR

Ncω2
p

cos(ωpt+ξpl+ϕR
p ). (2.23)

2.2 Numerical tests

We simulate a subsystem with N=200 atoms by the second order Runge-Kutta method
at a time step ∆t=0.01.

First, we perform a benchmark test for the heating process. Setting all atoms at equi-
librium initially, we inject heat jets at temperature TL=TR=3. As depicted in subplot (a) of
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Figure 3: Heating process for TL =TR=3.
(a): system temperature; (b): kinetic tem-
perature; (c): heat flux integral (curves
from top to bottom correspond to n =
3,100,198, respectively).

Fig. 3, the system temperature T(t)= 1
N ∑

N
n=1 u̇2

n(t) rises up to the equilibrium temperature
T=3 at a time slightly after t=200. This delay time comes from wave propagation across

the subsystem. In subplot (b), the kinetic temperature for each atom Tn=
1

5000

∫ 6000
1000 u̇2

n(t)dt
takes a random appearance. Furthermore, we display in subplot (c) the heat flux integral

Jn(t)=
∫ t

0
u̇n+1(un−un+1)dt at n=3,100,198, respectively. At around t=200, J3(t) increases

to about 300, indicating a net energy flow toward the subsystem. It then oscillates around
this level, due to thermal fluctuations. The same heat jet injection process is observed for
J198(t), with a reverse sign. For J100(t), it is zero before t= 100, when the heat jets from
both sides have not reached the center of the subsystem. It then oscillates around 0, re-
flecting the dynamical balance between the two reverse directional heat jets.

Next, we simulate with different temperatures for the two sides, namely, TL = 5 and
TR = 1. In Fig. 4, the subsystem is heated to the mean temperature T = 3. The heating
process and the kinetic temperature are similar to the previous case. However, in subplot
(c), we observe that the heat jet from the right takes a smaller flux than that from the left.
The net flux difference results in a slope for Jn, showing that the wave components to
maintain T=3 differ from the previous case. Moreover, as seen from subplot (b), there is
no Kapitza effect when a thermal gradient is applied on the two ends. This demonstrates
a perfect impedance match in the heat jet approach.

The range of wave number band and step size for the phonon representation affects
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Figure 4: Heating process for TL=5,TR=1.
(a): system temperature; (b): kinetic tem-
perature; (c): heat flux integral (curves
from top to bottom correspond to n =
3,100,198, respectively).

the fluctuations in both the system temperature and the averaged kinetic temperature
profile. As observed from Fig. 5 and Fig. 6, a wider range of wave number band and more
modes result in smaller fluctuations. This holds for the phonon representation (2.12),
which can be shown rigorously. The proposed heat jet approach faithfully reproduces
this representation, hence maintains the same feature.

0 3000 6000 9000 12000 15000
0

1

2

3

4

5

t

T

0 200 400 600 800 1000
0

1

2

3

4

5

n

T
n

Figure 5: Heating process for TL = TR = 3 with 376 modes (∆ξ = π/500). Left: system temperature; right:
kinetic temperature.
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Figure 6: Heating process for TL=TR=3 with different range of wave numbers (ξ sampled in [π/4,3π/4] with
∆ξ=π/100). Left: system temperature; right: kinetic temperature.

Finally, we illustrate a finite temperature simulation with non-thermal motion. We
first heat the subsystem to T = 3. At t = 2000, an additional motion is supplied on top

of the thermal fluctuations in the form of a Gaussian hump ũn = 50e−0.005(n−100)2
. We

observe from Fig. 7 that this motion is fairly strong initially. It splits into two humps,
propagating outward with an amplitude about half of the initial profile. At t=2100, the
humps reach the boundaries and vanish without observable reflection. Eventually the
subsystem equilibrates at T=3. See Fig. 8. The nominal system temperature during the
propagation of the Gaussian hump deviates from the true system temperature T=3. It is
during this period that over estimation of temperature and over damping of non-thermal
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Figure 7: Finite temperature simulation of harmonic lattice: (a) un(2000); (b) un(2050); (c) un(2100); (d)
un(2150).
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Figure 8: Nominal system temperature in finite temperature simulation of harmonic lattice.

motion likely occur, if one adopts standard heat baths such as those proposed by Nosé
and Hoover, Anderson, or Berendsen [9, 10, 12, 13].

The numerical results demonstrate that the proposed heat jet approach fulfills the de-
sign goal. It allows non-thermal motion and thermal fluctuations to propagate freely out
of the subsystem, while heat jets at both ends are injected into the subsystem effectively
to maintain the prescribed temperature. As a matter of fact, the heat jet approach uses a
linear boundary condition, and superposition holds. The linear nature makes it straight-
forward to support simultaneously non-thermal motion and thermal fluctuations.

3 Nonlinear lattice with Morse potential

For a nonlinear lattice, we perform a linearization and modify the two way boundary
condition by the sound speed c as a factor.

u̇1=−α1u̇2−u̇3+c·β3(u3−u1)+ f (t), (3.1)

f (t)= ẇ1+α1ẇ2+ẇ3−c·β3(w3−w1). (3.2)

To illustrate the heat jet approach for a nonlinear lattice, we consider the Morse po-
tential with nearest neighboring interaction

VM(r)= ε
(

e−2α(r−r0)−2e−α(r−r0)
)

. (3.3)

We rescale the displacement by 1/α, time by
√

m/2ε/α, and mass by m. Accordingly,
temperature is rescaled by 2ε/kB .

If we fit for carbon, the parameters are r0 = 1.39×10−10m, α = 2.625×1010m−1, ε =
6.03105×10−19J. Moreover, the mass of a carbon atom is m= 1.993×10−26kg [22]. Tem-
perature is then rescaled by 8.7407×104K, and time by 4.8968fs.

Under these scalings, the Newton equation reads

ün =−e−2(un+1−un)+e−(un+1−un)+e−2(un−un−1)−e−(un−un−1). (3.4)
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Performing Taylor expansion for the righthand side, we find the first two terms as

(un−1−2un+un+1)

[

1− 3

2
(un+1−un−1)

]

. (3.5)

Hence, we take the sound speed c= 1, and the atomic strain (un+1−un−1) indicates
the nonlinearity strength. A rough estimation shows that (un+1−un−1) is proportional to√

T. In Fig. 9, the system temperature equilibrates quickly toward a temperature slightly
lower than the target temperature. As a matter of fact, the heat jet approach produces
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Figure 9: System temperature and corresponding atomic strain (u101(t)−u99(t)) for nonlinear lattice with
the Morse potential where the parameters are fitted to carbon (horizontal level line represents the target
temperature). Top: TL = TR = 0.0034 (300K); middle:TL = TR = 0.0092 (800K); bottom: TL = TR = 0.0229
(2000K).
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Figure 10: Nonlinear lattice with the Morse potential where the parameters are fitted to carbon at target
temperature TL = TR = 0.0229 (2000K). Left: kinetic temperature (horizontal level line represents the target
temperature); upper-right: displacement snapshot; lower-right: velocity snapshot.

satisfactory results at room temperature 300K (TL =TR = 0.0034). At 800K, the resulting
system temperature is roughly 3% lower. At 2000K, the system temperature deviates for
only about 5%. Corresponding to the deviations, the subplots for (u101−u99) in the right
column show that the nonlinearity increases along with the target temperature.

There are two major relevant factors attributing to this deviation. First, the thermal
fluctuation input at the boundary atoms does not fit when nonlinearity becomes strong,
because the phonon representation is exact only for the linear harmonic lattice. Secondly,
the effective reflection suppression by the boundary condition needs to be reconsidered.
The first one may lead to a lower temperature, whereas the second one may trap more
kinetic energy inside the atomic subsystem. The resulting lower system temperature
indicates that the first factor dominates in this case. A more direct clue is the left subplot
in Fig. 10. While the first atom takes a bigger kinetic energy, there appears a boundary
layer right next to it, and the kinetic temperature drops below the target temperature for
all interior atoms.

With the heat jet approach validated for this nonlinear lattice, we perform a finite tem-
perature simulation at 300K with an additional motion again at t=2000, when the lattice

is at thermal equilibrium. The additional motion takes the form of ũn =1.5e−0.005(n−100)2
.

The big amplitude here is close to that induced by a dislocation. The numerical results in
Fig. 11 and Fig. 12 show effectiveness similar to that in the harmonic lattice simulation.

We note that nonlinearity depends on the type of atom and the potential. For instance,
if fitted to gold, one takes r0=2.922×10−10m, α=1.637×1010m−1, ε=8.9712×10−20J, and
m=3.2708×10−25kg [14]. Accordingly, the temperature is rescaled by 1.3002×104K, and
time by 82.4780fs. For room temperature 300K, the corresponding rescaled temperature
is T=0.0231, which is about that for carbon at 2000K. The system temperature in Fig. 13
is comparable to that in the bottom row of Fig. 9. This verifies that it is nonlinearity that
influences the fidelity of the heat jet approach.
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Figure 11: Finite temperature simulation of nonlinear lattice with the Morse potential where the parameters are
fitted to carbon: (a) un(2000); (b) un(2050); (c) un(2100); (d) un(2150).
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Figure 12: Nominal system temperature in finite temperature simulation of nonlinear lattice with the Morse
potential where the parameters are fitted to carbon (horizontal level line represents the target temperature).
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Figure 13: System temperature for a chain with Morse potential where the parameters are fitted to gold at
target temperature TL =TR=0.0231 (300K) (horizontal level line represents the target temperature).
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4 Discussions

From the wave viewpoint, we have proposed a heat jet approach for finite tempera-
ture atomic simulations with fidelity. We note that the wave viewpoint have also been
adopted by other researchers in different contexts, e.g., [21, 23]. The fidelity originates
from an accurate boundary treatment. It filters waves according to their propagation
directions, hence serves like a wave diode. In case of a linear lattice, the error is rigor-
ously bounded by the reflection coefficient, which is small by design. If more boundary
atoms are used in the treatment, we may further improve the fidelity, as seen from the
reflection coefficient analysis in [19]. Furthermore, we adopt the incoming components
of a phonon (normal mode) representation for the thermal fluctuation input. In this way,
we avoid the error caused by injecting wrong directional waves into the subsystem. Al-
though in nonlinear lattices, the wrong directional waves may seemingly help reaching
the target temperature, the phonon distribution is further distorted, as the more-likely
reflected modes have a better chance to be injected in. We remark that the displacement
in a stand-alone lattice with the standard Nose-Hoover heat bath may not be adopted for
thermal fluctuation input. The problem comes from a time rescaling in this heat bath,
which makes the displacement not representing the correct dynamics of a harmonic lat-
tice, even though the statistic properties and the phase space behaviors are correct.

There are various ways in treating lattices with stronger nonlinearity. Because a cor-
rect input turns out to be the bottle-neck, and such correct input is not available at this
moment for a system away from thermal equilibrium, we suggest to construct the input
by taking the displacement of a stand-alone lattice with the heat jet injected at its bound-
ary, and rescale the amplitudes in the Berendsen way [9]. Then this rescaled input is
effectively injected into the subsystem for finite temperature simulations.

For a lattice in multiple dimensions, we note that the heat jet approach works equally
well, provided that the boundary treatment is effective, and the thermal fluctuation input
is accurate. For the former, the matching boundary condition has been shown effective
in reflection suppression for various lattice structures [19,24]. Two way boundary condi-
tions may be constructed then according to [18]. For the latter, we notice that the normal
mode representation still works. As there are many incoming modes, the summing up of
all modes may induce heavy numerical cost and a more effective algorithm is demanded.

Due to its linear nature, the heat jet approach applies readily to multiscale simula-
tions. One important issue is the displacement drift, which represents a translation of
the whole atomic subsystem. For instance, see the middle subplot of Fig. 10, and sub-
plot (d) of Fig. 11. In a pure atomic simulation, the drift does not matter much for the
dynamics, as only velocity profile influences the temperature. However, in a multiscale
simulation, spurious translation may be passed to the coarse scale region and change
dynamics there. A rigorous derivation shows that we need to put a constraint on initial
velocity profile for the subsystem, as well as a treatment on initial thermal fluctuation for
the boundary atoms. In this way, we may avoid displacement drift and reproduce the
correct dynamics. Under the framework of a finite difference multiscale approach [25],
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we have successfully performed such multiscale simulations for linear harmonic lattice.
It will be reported in a forthcoming publication.
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