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Abstract. In this paper we consider an anisotropic convection-diffusion (ACD) filter
for image denoising and compression simultaneously. The ACD filter is discretized
by a tailored finite point method (TFPM), which can tailor some particular properties
of the image in an irregular grid structure. A quadtree structure is implemented for
the storage in multi-levels for the compression. We compare the performance of the
proposed scheme with several well-known filters. The numerical results show that the
proposed method is effective for removing a mixture of white Gaussian and salt-and-
pepper noises.
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1 Introduction

Image denoising has been one of the most challenging issues since it is very difficult to
preserve the edges and the desired textures while removing the noises. For years, many
mathematical models for image denoising have been presented, such as the total vari-
ation (TV) model by Rudin, Osher and Fatemi [16] and the partial differential equation
(PDE) based method pioneered by Perona and Malik [15]. In Perona-Malik (PM) type
model, the image is selectively smoothed via the control of the diffusion coefficient de-
pending on the gradient of the pixel intensity values. Thus, the edges as well as the
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desired detailed information can be preserved as the noises are reduced through the evo-
lution of the diffusion processing.

Later on, some nonlinear diffusion filters have been intensively studied in [4, 23].
Due to the elegance and the success of PM model, many nonlinear diffusion filters and
algorithms [1, 5, 7, 13, 14, 22] have been proposed for edge-preserving smoothing. Shih et
al. [20] proposed a convection-diffusion (CD) filter on adaptive grids, and the proposed
convection term can quickly reduce the required time steps for reaching an admissible
image quality. The CD filter works well especially on a mixture of Gaussian and pepper-
and-salt noises in comparing with other PDE based filters.

The TFPM was first proposed by Prof. H. Han and then implemented by Han, Huang
and Kellogg [8]. The TFPM performs very well in convection dominated convection-
diffusion problems, and the essential concept of the TFPM is the selection of appropriate
functions which are particular solutions to the differential equation. As a result, one can
derive an approximating difference equation of which the coefficients are solved exactly
from the selected functions, and the numerical solution is locally tailored to keep some
particular properties of the equation. The TFPM can achieve approximation with higher
accuracy even in coarse grid. Due to this special feature, many applications includ-
ing convection-dominated convection-diffusion-reaction problems [19], first order wave
equation [12] and steady magnetohydrodynamics duct flow problem [11] have been suc-
cessfully implemented. More recently, TFPM demonstrates the effectiveness in solving
singularly perturbed problems [9, 10]. Here we will present an anisotropic CD (ACD)
filter with the advantage of the TFPM for image denoising.

The paper is organized as follows. Section 2 contains a brief introduction to various
nonlinear diffusion filters including the proposed ACD filter for image denoising. In
Section 3 we present the TFPM for ACD filter. In Section 4 we extend the TFPM on
adaptive grids for the image compression. Section 5 presents the numerical results on
several test images. Finally, we give some conclusions in Section 6.

2 Nonlinear filters

2.1 PM diffusion filters

First we briefly review the PM type nonlinear diffusion filter. For a given grayscale noisy
image with pixel intensity u0(x,y) : Ω 7→ [0,255] the regularized PM type filter presented
by Catté et al. [4] is



















ut=div(g(|∇(Gσ∗u)|)∇u) in Ω×(0,T),

∂u

∂n
=0 on ∂Ω×(0,T),

u(x,y,0)=u0(x,y) (x,y)∈Ω,

(2.1)
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where Ω is a rectangular domain of the image with boundary ∂Ω, n is the unit outward
vector normal to ∂Ω, div is the divergence operator, ∇ is the gradient operator, g is the
diffusivity function, Gσ is the Gaussian function with the standard deviation σ, and Gσ∗u
is the convolution of Gσ and u. The convolution guarantees the well-posedness of the
equation. Generally, the diffusivity function g, or the edge-stopping function, is smooth
and non-increasing. To suppress the diffusion on the edges, it satisfies g(0) = 1, g(s)>
0, ∀s, and g(s)→0 as |s|→∞. Two diffusivity functions proposed by Perona and Malik

[15] are g(s)=1/
(

1+s2/K2
)

and e−s2/K2
where K is the gradient threshold parameter. The

PM type filter is isotropic since the diffusion coefficient is determined by a scalar-valued
function.

In [23], Weickert proposed a filter based on an anisotropic diffusion tensor as














ut=div(D ·∇u) in Ω×(0,T),

〈D∇u,n〉=0 on ∂Ω×(0,T),

u(x,y,0)=u0(x,y) (x,y)∈Ω,

(2.2)

where D is a positive definite 2 by 2 matrix depending on the regularized structure tensor.
D is written by

D=PBP−1,

where

P=

[

v1 −v2

v2 v1

]

, B=

[

κ1 0
0 κ2

]

,

and [v1 v2]T and [−v2 v1]
T are the eigenvectors of D. Different choices on the selected

eigenvalue and the corresponding eigenvector leads to a different diffusion tensor. For
example, by letting [v1 v2]T paralleled to ∇uσ for uσ the regularized image, one obtains
an edge-enhancing diffusion model. The values of κ1 and κ2 suggested by Weickert [23]
are given by

κ1=α, and κ2=

{

α if µ1=µ2,

α+(1−α)exp
(

−C
(µ1−µ2)2

)

if µ1 6=µ2,

where C>0, 0<α≪1, µ1,2, v1,2 are the eigenvalues and the corresponding eigenvectors
of the regularized structure tensor J=∇uσ ·∇uT

σ , respectively.

2.2 CD filter and ACD filter

Shih et al. [20] modified the PM model and proposed a CD filter for image denoising as



















ut−ε∆u+β·∇u=0 in Ω×(0,T),

∂u

∂n
=0 on ∂Ω×(0,T),

u(x,y,0)=u0(x,y) (x,y)∈Ω,

(2.3)
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where the diffusion coefficient ε= 1
1+|∇u|2 and the velocity field

β=(β1,β2)=γ
∇u⊥

|∇u|ǫ
. (2.4)

Here γ is a constant that controls the magnitude of the convection term and |∇u|ǫ =
√

u2
x+u2

y+ǫ with 0 < ǫ ≪ 1. The direction of the convection term is orthogonal to the

gradient and during the denoising process the image at edges would convect along the
tangential direction of the edge. [20] considered an implicit time-stepping scheme with a
modified streamline diffusion method (MSD) [18] to avoid the severe oscillation around
the edges where ε is small.

Like PM type filter, the diffusion in CD filter is isotropic, which indicates that the
capability for preserving details is not satisfactory. In this paper we consider an ACD
filter

∂u

∂t
−div

([

ε1 0
0 ε2

]

·∇u

)

+β·∇u=0, (2.5)

where ε1 and ε2 are diffusion coefficients in the x− and y− directions, respectively, and
β is defined in Eq. (2.4). This filter is in fact a simple version of diffusion tensor and it
can be implemented straightforward and easily by using the TFPM. For a given uk

i,j the
approximations in ux,uy are

Dxuk
ij =

{

D+
x uk

i,j if
∣

∣

∣
D+

x uk
i,j

∣

∣

∣
≤
∣

∣

∣
D−

x uk
ij

∣

∣

∣
,

D−
x uk

i,j otherwise,
(2.6)

Dyuk
ij =

{

D+
y uk

i,j, if
∣

∣

∣
D+

y uk
i,j

∣

∣

∣
≤
∣

∣

∣
D−

y uk
ij

∣

∣

∣
,

D−
y uk

i,j, otherwise,
(2.7)

where

D+
x uk

i,j=(uk
i+1,j−uk

i,j)/h, D−
x uk

i,j=(uk
i,j−uk

i−1,j)/h,

D+
y uk

i,j=(uk
i,j+1−uk

i,j)/h, D−
y uk

i,j=(uk
i,j−uk

i,j−1)/h.

Similarly, the components of the convection vector β1 and β2 are given by

βk
1,ij =

{

βk +
1,ij , if

∣

∣

∣
βk +

1,ij

∣

∣

∣
≤
∣

∣

∣
βk −

1,ij

∣

∣

∣
,

βk −
1,ij , otherwise,

βk
2,ij =

{

βk +
2,ij , if

∣

∣

∣
βk +

2,ij

∣

∣

∣
≤
∣

∣

∣
βk −

2,ij

∣

∣

∣
,

βk −
2,ij , otherwise,
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where

βk +
1,ij =max{βk

1,ij, 0}, βk −
1,ij =min{βk

1,ij, 0},

βk +
2,ij =max{βk

2,ij, 0}, βk −
2,ij =min{βk

2,ij, 0}.

We consider a modified diffusivity function for improving the performance in remov-
ing the salt-and-pepper noise. First, set up a simple detector for salt-and-pepper noise. A
pixel is a candidate of salt-and-pepper noise if it satisfies below conditions:

1. ui,j is extremely low or high,

2.
i+1

∑
m=i−1

j+1

∑
n=j−1

|um,n−ui,j| is greater than a threshold value.

Note that in the first condition, we do not specify ui,j= 0 or 255 since this detector will be
applied at each iteration during the ACD denoising process.

Next, we use the following diffusivity function to eliminate the salt-and-pepper noise
candidates






















ε1(p)=

(

Gx

µ

)2

, ε2(p)=

(

Gy

µ

)2

if p is a salt-and-pepper noise candidate,

ε1(p)=
1

1+
(

Gx
K

)2
, ε2(p)=

1

1+
(

Gx
K

)2
otherwise,

(2.8)
where Gx ≡ Dxuk

i,j and Gy ≡ Dyuk
i,j are defined in Eq. (2.6) and Eq. (2.7), µ and K are

two threshold parameters for the edges. The salt-and-pepper noise candidates can be
removed quickly since the diffusion coefficient is proportional to the value of |Gx| or
|Gy|.

3 Tailored finite point method for the ACD filter

3.1 The TFPM for the discretization

Let the solution to Eq. (2.5) have the form

u= e−Aλ2t+ıλ(Bx+Cy+Dt), (3.1)

where ı=
√
−1, A=ε1B2+ε2C2, and D=β1B+β2C with B, C, λ being arbitrary. Note that

for λ= 0, the solution is a constant. Now we develop an explicit difference scheme on
a subdomain with six points as shown in Fig. 1. Consider only two time steps, t=0 and
t= τ. For time t=0, there are five points, the reference point p0,0 =(0,0,0) together with
four neighboring points in a counterclockwise order: p1,t =(hx1

,hy1
,0), p2,0 =(hx2 ,hy2 ,0),
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Figure 1: The reference points for ACD-TFPM.

p3,0=(hx3 ,hy3 ,0) and p4,0=(hx4
,hy4

,0), where hxi
and hyi

are the coordinates for the point
pi,0 in x- and y-directions. We want to find the approximate solution at time t= τ, and
p0,τ =(0,0,τ).

Next, we choose the solution space consisting of five basis functions. There can be a
variety of options. For example, by taking (B,C)=(±1,0) and (0,±1) we have

W5
1={1, e−ε1λ2t cos(λ(x+β1t)), e−ε1λ2t sin(λ(x+β1t)),

e−ε2λ2t cos(λ(y+β2t)), e−ε2λ2t sin(λ(y+β2t))}. (3.2)

Denoting un
i,j by the numerical approximation of u(xi,yj,tn), we assume the explicit dif-

ference scheme is given by

un+1
i,j =α0un

i,j+α1un
i+1,j+α2un

i,j+1+α3un
i−1,j+α4un

i,j−1. (3.3)

Substituting all the basis functions of Eq. (3.2) into Eq. (3.3) at each points on a subdo-
main, the coefficients αi can be determined by the local system

Aα=b, (3.4)

where

A=













1 1 1 1 1
1 cos(λhx1

) cos(λhx2 ) cos(λhx3 ) cos(λhx4
)

0 sin(λhx1
) sin(λhx2) sin(λhx3 ) sin(λhx4

)
1 cos(λhy1

) cos(λhy2) cos(λhy3) cos(λhy4
)

0 sin(λhy1
) sin(λhy2 ) sin(λhy3) sin(λhy4

)













,

α=[α0, α1, α2, α3, α4]
T,

and
b={1, e−ε1λ2τ cos(λβ1τ), e−ε1λ2τ sin(λβ1τ),

e−ε2λ2τ cos(λβ2τ),e−ε2λ2τ sin(λβ2τ)}.

For any λ such that det(A) 6= 0, α can be uniquely defined. We can solve the whole
system point-wisely.
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3.2 Stability analysis

For the simplicity, assume that there are uniformly partitions both on the spatial domain
and the time domain with grid size h and time step τ, respectively. By letting ε1 = ε2 = ε
and β1=β2= β̄, one can verify that the coefficients in Eq. (3.3) are given by

α0=−1+cos(λh)

1−cos(λh)
+

2cos
(

β̄λτ
)

1−cos(λh)
e−ελ2τ ,

α1=α2=
1

2(1−cos(λh))
− sin

(

β̄λτ
)

+sin
(

λ
(

h− β̄τ
))

2sin(λh)(1−cos(λh))
e−ελ2τ ,

α3=α4=
1

2(1−cos(λh))
−−sin

(

β̄λτ
)

+sin
(

λ
(

h+ β̄τ
))

2sin(λh)(1−cos(λh))
e−ελ2τ,

(3.5)

where λ 6= 0. Following Von Neumann linear stability analysis, we write the numerical
solution at time t=nτ as

un
i,j= ζneıγiheıκjh, (3.6)

where γ and κ are spatial frequencies, and ζ is the amplification factor. Substituting this
expression into Eq. (3.3), we have

ζn+1eıγiheıκjh =α0ζneıγiheıκjh+α1ζneıγ(i+1)heıκjh+α2ζneıγiheıκ(j+1)h

+α3ζneıγ(i−1)heıκjh+α4ζneıγiheıκ(j−1)h. (3.7)

Dividing Eq. (3.7) by ζneıγiheıκjh gives

ζ=α0+α1eıγh+α2eıκh+α3e−ıγh+α4e−ıκh. (3.8)

From Eq. (3.5), α3=α1+
sin(β̄λτ)
sin(hλ)

e−ελ2τ and α4=α2+
sin(β̄λτ)
sin(hλ)

e−ελ2τ , we arrive at

|ζ|=
∣

∣

∣

∣

∣

α0+2α1(cos(γh)+cos(κh))+
sin
(

β̄λτ
)

e−ελ2τ

sin(hλ)

(

e−ıγh+e−ıκh
)

∣

∣

∣

∣

∣

≤|α0|+4|α1|+2

∣

∣

∣

∣

∣

sin
(

β̄λτ
)

e−ελ2τ

sin(hλ)

∣

∣

∣

∣

∣

. (3.9)

Note that for β̄=0, the imaginary parts in Eq. (3.9) vanishes and

ζ=−1+2e
− επ2τ

4h2 +cos(γh)+cos(κh)−e
− επ2τ

4h2 cos(κh)−e
− επ2τ

4h2 cos(γh)

=1−2

[

sin2

(

γh

2

)

+sin2

(

κh

2

)]

(

1−e−ελ2τ

1−cos(λh)

)

. (3.10)
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Obviously,
[

sin2
( γh

2

)

+sin2
(

κh
2

)]

and 1−e−ελ2τ

1−cos(λh)
are nonnegative. |ζ|<1 implies

[

sin2

(

γh

2

)

+sin2

(

κh

2

)]

(

1−e−ελ2τ

1−cos(λh)

)

<1,

which leads to
1−e−ελ2τ

1−cos(λh)
<

1

2
.

Therefore, the stability condition is dependent on λ, h and ε, and the restriction on the
selected time step is

τ<
ln2−ln(1+cos(λh))

ελ2
. (3.11)

For 1+cos(λh) 6=0, the ACD-TFPM in uniform partitions is conditionally stable. In par-

ticular, for λ→ (1+2m)π
h , m=0,1,2,··· , it tends to be unconditionally stable. For the proper

choice by letting λ=⌊π
h ⌋, the time step τ can be a larger number.

4 Implement the TFPM in adaptive grids

4.1 The quadtree representation of images

In the CD filter, the adaptive meshing is based on a strategy that utilizes the saturation
condition to coarsen the mesh. With a coarsening indicator, the multi-level grid is con-
structed and only one level difference for any two neighboring elements in mesh hierar-
chies is allowed. This kind of meshing is appropriate for Galerkin finite element method.
In this work we use a popular refining approach, the quadtree representation for images,
in which the cost of mesh generation is lower and the level difference can be two or more.

Finkel and Bentleyis [6] proposed the quadtree data structure where every internal
node has four leafs. For image representation, a quadtree is constructed by recursively
partitioning the image into four sub-blocks. The leafs of a root is in order of the NW, NE,
SW, and SE quadrants as shown in Fig. 2. Only one intensity value represent all the values
in the sub-block. Naturally, this technique is immediately used for image compression
if various resolution levels are indispensable for keeping a certain degree of quality. For
a complex region in an image, further segmentation is needed. The evaluation of the
criterion for segmentation plays a key role in the quadtree representation. Since each
sub-block is represented by a single value, we have to assure whether a further division
into four sub-blocks is needed. One common measurement is the difference between the
maximum and the minimum intensity values in a sub-block. If the difference is greater
than a threshold, the sub-block must be subdivided; otherwise, the division procedure
stops.

For better preservation of edges and details, we incorporate Canny edge detection
[3] into the quadtree representation. For any sub-block that contains at least one pixel
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Figure 2: An example of quadtree structure for image representation.

Figure 3: Quadtree structure for 256×256 Lena image. Left: original image; Middle: quadtree structure without
using Canny edge detection; Right: quadtree structure after using Canny edge detection.

marked as an edge region, the sub-block is divided into four sub-blocks. Fig. 3 compares
the block structures with and without Canny edge detection. The maximum block size is
64×64. Clearly, more details are retained using the Canny edge detection.

The image processing toolbox of Matlab provides an efficient solution for constructing
the quadtree decomposition iteratively. Instead of using a tree structure, a sparse matrix
S stores a quadtree structure as shown in Table 1. We will use this representation for
implementing the TFPM in adaptive grids.

Table 1: The sparse matrix S with element Sij representing the dimension of block.

upper left corner (S) dim of block

(1,1) 16

(17,1) 8

(17,9) 8
...

...

(17,17) 4
...

...
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4.2 The TFPM in adaptive grids

The TFPM possesses the properties of meshless method as the grid connectivity is unnec-
essary for computation, and it can be easily extended on scattered nodes without many
modifications. Here we introduce the TFPM on the multi-level grid points obtained by
quadtree decomposition.

Overall, the methodology is similar to the TFPM on uniform partitions except that
the determination of the subdomain requires more attention owing to the complexity
of the multi-level grid placement. The mean value of the intensities for each sub-block
represents all the intensities for the sub-block. The k−nearest points searching algorithm,
which is commonly used for quadtree search, is not suitable in this case. For instance, the
four selected points may be too close in a small region, resulting in a badly ill-conditioned
local matrix. For the worst case, these points can be co-linear and thus the local matrix
is singular. Accordingly, we seek each nearest point in each quadrant, which guarantees
the points in a subdomain are well-distributed for a better computational stability. Fig. 4
shows one example of the subdomain at time step k−1.

tpk−1
0

t

pk−1
1

tpk−1
2

tpk−1
3

tpk−1
4

Figure 4: The reference points for TFPM on adaptive meshes at tk−1.

Even though the points in a computational subdomain are selected using the above
method, the local matrix can be singular or ill-conditioned under certain circumstances if
the above-mentioned basis is applied. We consider two approaches to solve the problem.
If the local matrix is singular, we use an alternative basis

W5
2=

{

1, e−ε1λ2t cos

(

λ
( x+y√

2
+β1t

)

)

, e−ε1λ2t sin

(

λ
( x+y√

2
+β1t

)

)

,

e−ε2λ2t cos

(

λ
( x−y√

2
+β2t

)

)

, e−ε2λ2t sin

(

λ
( x−y√

2
+β2t

)

)}

, (4.1)

which is obtained by taking (B,C)=(± 1√
2
,± 1√

2
). This basis is in fact a result of rotating

the first basis by an angle of π
4 .

If both of the two bases fail, we exploit the traditional Tikhonov regularization [21],
where one can achieve an acceptable approximate solution x̃ to the linear system Ax=b
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by solving

x̃=(A∗A+δI)−1b, (4.2)

where A∗ is the conjugate transpose of matrix A, I is the identity matrix, and δ is a posi-
tive regularization parameter.

5 Numerical experiments

In this section we compare the performances of the ACD-TFPM with some well-known
filters for removing a mixture of Gaussian noise and the salt-and-pepper noise. The test
images are grayscale pictures. We test 5 different filters including the PM implemented
by finite difference method (FD), the adaptive parameterized block-based singular value
decomposition (APBSVD) [17] with maximum block size 16, adaptive wavelet threshold-
ing (DWT) [2] and median filter (MF) using 3×3 windows.

For the PM and the ACD, we set K=µ=20 for the diffusivity function in Eq. (2.8). For
the ACD model, we let γ=0.01 in the convection term, and set τ=5E-2 in uniform grids
and τ = 5E-4 in adaptive grids. Let the parameter δ= 1E-8 for Tikhonov regularization.
All the computation are performed on an Intel Core PC using MATLAB Version 2014a
with double precision arithmetic on processor I7-4790 with 3.60GHz and 32 GB RAM.

For an image of size M×N, the evaluation of image quality is measured by peak
signal to noise ratio (PSNR) and mean absolute error (MAE) defined as

PSNR=10log10

{

2552MN

∑
M
i=1∑

N
j=1 [u0(i, j)−u(i, j)]2

}

,

MAE=
∑

M
i=1∑

N
j=1 |u0(i, j)−u(i, j)|

MN
, (5.1)

where u0 is the intensity of the original image and u is that of the recovered image.

Experiment 5.1. Compare ACD/TFPM filter with other filters

We compare the performances of the ACD-TFPM filter with those of the APBSVD, DWT,
PM/FD, and MF. It is well-known that the APBSVD, DWT, and PM/FD are excellent
filters for reducing Gaussian noises while MF is also good for removing the salt-and-
pepper noise. All test images of size 512×512 are corrupted by Gaussian noises with
standard deviation σ=10 and 5% salt-and-pepper noise. On the uniform partitions with
h=1, we set λ=3 based on the stability analysis in Section 4. The threshold of salt-and-
pepper noise detector is the 80-th percentile of the total image gradients.

The performance of each filter is displayed in Table 2. With the presence of salt-and-
pepper noise, the APBSVD, DWT and PM/FD filters are all impractical and the perfor-
mance of the APBSVD is the worst. MF is much better in this case. Even MF does not
work for Gaussian noises, the salt-and-pepper noise at this density level can nearly be
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5: In the first column (a), (e), (i) and (m) are the original images; in the second column (b), (f), (j)
and (n) are corrupted images; in the third column (c), (g), (k) and (o) are the recovered images by using
ACD-TFPM; in the last column (d), (h), (l) and (p) are the recovered images by using MF.

diminished completely. On the other hand, the ACD-TFPM can deal with both kinds of
noises and give the best recovered images. Fig. 5 shows the original images, corrupted
images, and images restored by the ACD-TFPM and MF. We can see that most of the
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Table 2: Images corrupted by white Gaussian noise (σ=10) and salt-and-pepper noise (5%).

Aerial Airplane Barbara Boat

MAE PSNR MAE PSNR MAE PSNR MAE PSNR

Noise 13.91 17.65 13.99 17.53 13.89 18.04 13.96 17.91

APBSVD 13.90 17.76 13.15 17.69 13.61 18.21 13.51 18.08

PM/FD 12.82 17.62 13.29 17.59 13.11 18.11 12.91 18.00

DWT 12.09 19.99 11.32 19.92 11.57 20.91 11.28 20.87

MF 7.38 26.98 4.93 30.94 9.04 24.54 5.76 29.77

ACD-TFPM 5.66 29.47 3.94 32.77 5.53 30.10 4.56 31.78

salt-and-pepper noises are eliminated by MF; however, the recovered images are darker
than original images. The recovered images by the ACD-TFPM contain more detailed
information, and they are brighter than those of MF.

Experiment 5.2. Preserve image details: pinstriped texture

Since the APBSVD, DWT and PM/FD are only effective for Gaussian noise, we consider
a two-stage denoising approach, which we will compare to the ACD-TFPM. We first re-
move the salt-and-pepper by MF and then reduce the Gaussian noises. We use 512×512
Barbara image to investigate the effects of MF+APBSVD, MF+PM/FD, MF+DWT and
our ACD-TFPM on some fine textures. The noisy levels are higher than the first experi-
ment with σ= 20 for Gaussian noise and 10% for salt-and-pepper noise. Table 3 reveals
the results. PSNR for the corrupted image is 14.64 and MAE is 27.08. The performance
of ACD-TFPM remains the best and can reach as high as 25.88. For recovered images by
MF+APBSVD, MF+PM/FD and MF+DWT, most of the salt-and-pepper noises disappear
and the Gaussian noises are also reduced. Using this strategy, PSNRs are around 23.

Table 3: Barbara image corrupted by white Gaussian noise (σ=20) and salt-and-pepper noise (10%).

Noise MF+APBSVD MF+PM/FD MF+DWT ACD-TFPM

PSNR 14.64 23.63 23.37 23.43 25.88

MAE 27.08 10.96 11.64 11.63 9.01

Fig. 6 shows the recovered images and Fig. 7 highlights the textures of the trouser in
the marked region. We can see that the pinstriped texture can still be recognized in the
image denoised by ACD-TFPM, whereas the textures in other restored images are thor-
oughly destroyed. After removing salt-and-pepper noises by MF, from our observation
the delicate texture of the restored image has been damage and affects the later removal of
Gaussian noises. ACD-TFPM prevails because the salt-and-pepper and Gaussian noises
are treated simultaneously. The comparison of image qualities confirms the effectiveness
of our proposed method.
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(a) Original image. (b) Noisy image. (c) ACD-TFPM.

(d) MF+APBSVD (e) MF+DWT (f) MF+PM/FD

Figure 6: Experiment 5.2. The Barbara image is corrupted by σ=20 Gaussian noise and 10% salt-and-pepper
noise.

(a) Original image. (b) Zoom-in of the
original image.

(c) Zoom-in of the
noisy image.

(d) ACD-TFPM. (e) MF+APBSVD (f) MF+DWT (g) MF+PM/FD

Figure 7: Experiment 5.2. A comparison of the pinstriped textures of the trouser by various filters.
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Experiment 5.3. Performance using adaptive grids

In this experiment we demonstrate the performance of the ACD-TFPM on five-level
adaptive grids with sub-block sizes from 1×1 to 16×16 established by using the quadtree
decomposition. The test images are of size 256×256 and corrupted by Gaussian noises
with standard deviation σ=10 and 5% salt-and-pepper noise. The thresholds for quadtree
decomposition, Canny edge detection and the salt-and-pepper noise detector are 32, 30
and 60, respectively.

Table 4 shows the required sizes of the images, compression ratios (CR), PSNRs and
MAEs at the first 8 iterations for the three test images, Poker, Lena and Peppers. All the
required nodes decrease significantly at the second iteration, and then fluctuate moder-
ately for the rest of iterations. For Poker image, CR is less than 20% since this image is
much simpler. The PSNR at the second iteration reaches the maximum value, and then
goes down gradually. For other real images, CRs are roughly 50%–55%. The PSNR num-
bers increase slightly and are almost the same.

Table 4: Block structures for 256×256 images corrupted by Gaussian noise with σ= 10 and salt-and-pepper
noises (5%). Maximum block size is 8×8. NO denotes the number of required nodes.

Ite. 1 2 3 4 5 6 7 8

Poker

NO 14353 12793 12784 12784 12733 12754 12688 12439

CR 21.90% 19.52% 19.51% 19.51% 19.43% 19.46% 19.36% 18.98%

PSNR 26.82 26.94 26.94 26.93 26.92 26.90 26.88 26.87

MAE 5.44 5.11 5.14 5.16 5.19 5.21 5.24 5.23

Lena

NO 34576 32485 32542 32527 32485 32557 32404 32233

CR 52.56% 49.57% 49.66% 49.63% 49.56% 49.68% 49.44% 49.18%

PSNR 28.23 28.37 28.39 28.40 28.41 28.42 28.44 28.46

MAE 6.76 6.53 6.53 6.53 6.54 6.54 6.53 6.51

Peppers

NO 35905 34498 34387 34387 34375 34306 34222 34105

CR 54.79% 52.64% 52.47% 52.47% 52.45% 52.34% 52.21% 52.11%

PSNR 27.87 27.96 27.97 27.98 28.00 28.01 28.02 28.02

MAE 7.06 6.92 6.91 6.92 6.92 6.92 6.92 6.92

Fig. 8 illustrates the quadtree block structures of Poker at the time steps t= t1, t3, t5

and t7. Most of the block sizes at iteration 1 are smaller since the noises are not sup-
pressed at this step, and after iteration 3 the sub-blocks are bigger due to the reduction
of noise. Fig. 9 shows the 3-D plots of the original, corrupted images of Poker and the
recovered images at the time steps t1 and t2. Fig. 10 shows the recovered images and
block structures of Lena and Peppers. Similar to the previous two experiments, there is
always a trade-off between removing these two kinds of noises. If we want to reduce
more salt-and-pepper noises, the threshold for salt-and-pepper noise detector must be
lower, which causes a poorer performance for removing Gaussian noises and vice versa.
The selections of threshold parameters need a further study for optimal performances.
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(a) t= t1 (b) t= t3 (c) t= t5 (d) t= t7

Figure 8: Experiment 5.3. Block structures for Poker denoising at t= t1, t3, t5, and t7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Experiment 5.3. (a) the original image, (b) the noisy image with σ = 10 Gaussian noise and 5%
salt-and-pepper noise, (c) the recovered image by ACD-TFPM, (d) the block structure at t= t2, (e) the 3-D
plot of (a), (f) is the 3-D plots of (b), (g) and (h) are 3-D plots for t= t1 and t2, respectively.

6 Conclusions

We propose an ACD model for image denoising using the TFPM. In addition, we im-
plement our model with four-level grid structure generated by quadtree decomposition
to simultaneously perform the denoising and compression. Our numerical experiments
show that for a mixture of white Gaussian and salt-and-pepper noises our model ob-
tains higher quality of the recovered images and better capability of detail-preserving in
comparison with other well-known filters. In the future study, we will consider the selec-
tion of the threshold parameters and other algorithms in adaptive grids to reach higher
computational efficiency.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Experiment 5.3. (a) and (e) are original images, (b) and (f) are noisy images with σ=10 Gaussian
noise and 5% salt-and-pepper noise, (c) and (g) are recovered images by ACD-TFPM, (d) and (h) are the block
structures.
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[4] F. Catté, P. L. Lions, J. M. Morel and T. Coll, Image selective smoothing and edge detection
by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.

[5] S. Chao and D. Tsai, An improved anisotropic diffusion model for detail and edge preserving
smoothing, Pattern Recognit. Lett., 31 (2010), 2012-2023.

[6] R. Finkel and J. L. Bentley, Quad trees: a data structure for retrieval on composite keys, Acta
Inform., 4 (1974), 1-9.

[7] Z. Guo, J. Sun, D. Zhang and B. Wu, Adaptive Perona-Malik model based on the variable
exponent for Image denoising, IEEE Trans. Image Process., 21 (2012), 958-967.



1374 Y.-T. Lin, Y.-T. Shih and C.-C. Tsai / Commun. Comput. Phys., 19 (2016), pp. 1357-1374

[8] H. Han, Z. Huang, and R. B. Kellogg, A tailored finite point method for a singular perturba-
tion problem on an unbounded domain, J. Sci. Comput., 36 (2008), 243-261.

[9] H. Han, J.J.H. Miller and M. Tang, A parameter-uniform tailored finite point method for
singularly perturbed linear ODE systems, J. Comp. Math., 31 (2013), 422-438.

[10] H. Han, Y. T. Shih and C. C. Tsai, Tailored finite point method for numerical solutions of
singular perturbed eigenvalue problems, Adv. Appl. Math. Mech., 6 (2014), 376-402.

[11] P. W. Hsieh, Y. T. Shih and S. Y. Yang, A tailored finite point method for solving steady MHD
duct flow problems with boundary layers, Commun. Comput. Phys., 10 (2011), 161-182.

[12] Z. Huang and X. Yang, Tailored finite point method for first order wave equation, J. Sci.
Comput., 49 (2011), 351-366.

[13] F. Liu and J. Liu, Anisotropic diffusion for image denoising based on diffusion tensors, J.
Vis. Commun. Image R., 23 (2012), 516-521.

[14] C. Lopez-Molina, M. Galar, H. Bustince and B. De Baets, On the impact of anisotropic diffu-
sion on edge detection, Pattern Recognit., 47 (2014), 270-281.

[15] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE
Trans. Pattern Anal. Machine Intell., 12 (1990), 629-639.

[16] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Phys. D, 60 (1992), 259-268.

[17] Y. Shih, C. Chien and C. Chuang, An adaptive parameterized block-based singular value
decomposition for image de-noising and compression, Appl. Math. Comput., 218 (2012),
10370-10385.

[18] Y. Shih and H. C. Elman, Modified streamline diffusion schemes for convection-diffusion
problems, Comput. Meth. Appl. Mech. Eng., 147 (1999), 137-151.

[19] Y. Shih, R. B. Kellogg and Y. Chang, Characteristic tailored finite point method for
convection-dominated convection-diffusion-reaction problems, J. Sci. Comput., 47 (2011),
198-215.

[20] Y. Shih, C. Rei and H. Wang, A novel PDE based image restoration: convection-diffusion
equation for image denoising, J. Comput. Appl. Math., 231 (2009), 771-779.

[21] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method,
Soviet Math. Dokl., 4 (1963), 10351038.

[22] Y. Wang, J. Guo, W. Chen and W. Zhang, Image denoising using modified Perona-Malik
model based on directional Laplacian, Signal Process., 93 (2013), 2548-2558.

[23] J. Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-Verlag,
Stuttgart, Germany, 1998.


