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Abstract. A novel mesh deformation technique is developed based on the Delau-
nay graph mapping method and the inverse distance weighting (IDW) interpolation.
The algorithm maintains the advantages of the efficiency of Delaunay graph mapping
mesh deformation while it also possesses the ability of better controlling the near sur-
face mesh quality. The Delaunay graph is used to divide the mesh domain into a
number of sub-domains. On each sub-domain, the inverse distance weighting inter-
polation is applied, resulting in a similar efficiency as compared to the fast Delaunay
graph mapping method. The paper will show how the near-wall mesh quality is con-
trolled and improved by the new method.
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1 Introduction

Aerodynamic shape optimization, flapping wing and dynamic aeroelastic fluid-structure
interaction problems require the interface or boundary to deform during the solution pro-
cess. In order to propagate the displacement of the boundary into the solution domain,
accurate and efficient meshing techniques are needed. There are mainly three types of
methods to handle such problems, namely re-mesh, overset mesh and dynamic mesh
techniques. The re-mesh techniques regenerate the mesh to account for the deformation
of the interface, hence the solution needs to be interpolated from the old mesh to the
new mesh. For the aforementioned problems, the mesh needs to be frequently updated,
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which makes the re-mesh approach very time-consuming; furthermore the interpolation
between two different meshes also causes extra error for the numerical solution. The
overset mesh method is now widely used in simulation of the rigid body motion when
large body movement occurs. The dynamic mesh methods use certain techniques to
move the mesh nodes according to the deformation. It is generally more efficient than
the re-mesh method and the solution interpolation is avoided. The two key issues of this
method are the efficiency and mesh quality of the resultant mesh. During the shape de-
formation process, the mesh needs to be renewed frequently, especially in the dynamic
fluid-structure interaction simulation the mesh needs to be updated for each time step,
and therefore a fast dynamic mesh technique can efficiently decrease the computational
time. The accuracy of the CFD simulation largely relies on the mesh quality, particularly
the mesh quality near the wall boundary, since in this region a poor mesh can result in
large truncation errors. As a result, high quality and high efficiency are the most impor-
tant aspects of the dynamic mesh techniques.

Dynamic mesh techniques can be generally classified into two main categories, based
on either physical analogy or interpolation [1]. The physical analogy approach, such as
the spring analogy approach [2], normally requiring the connectivity information of the
mesh, uses certain physics processes to propagate the mesh deformation from the bound-
ary to the solution domain. Though this method has been successfully applied to many
unsteady and optimization problems, it is a relatively expensive approach due to the nec-
essary iterations for solving the associated spring systems. For large deformation, it may
lead to invalid mesh cells. Farhat et al. [3] introduced the torsional springs to prevent the
mesh from becoming invalid which greatly improves the robustness of the method. By
solving a set of partial differential equations, Loehner and Yang [4,5] developed a method
based on elastic analogy. Particularly, by solving a bi-harmonic set of equations, Helen-
brook [6] found that both mesh quality and orthogonality are superior to the Laplace
equation based method. In general, this type of method is computationally expensive
and not suitable for the large deformation problem.

An interpolation method, by applying some interpolation schemes, directly obtains
the displacement or the new coordinates of each node. The radial basis function (RBF)
method, proposed by de Boer [7], is able to maintain the mesh quality near the boundary.
However it needs to solve three large matrices depending on the node number on the
surfaces. For practical 3D problems, it becomes very inefficient. Rendall and Allen [8]
proposed an approximate RBF method with a data reduction algorithm. It effectively im-
proves the efficiency of the RBF method. On the other hand, this method also introduces
surface point mismatching errors. In order to solve this problem, they added a surface
correction step [9]. Witteveen and Bijl [10] proposed a direct interpolation strategy by
using inverse distance weighting (IDW) interpolation, which is faster than the original
RBF method. Luke et al. [1] proposed a fast explicit interpolation method based on IDW
method, which has a similar mesh quality as the RBF method, but with a relatively faster
speed. For large practical 3D problems, these methods still involve substantial computa-
tional cost. Liu et al. [11] developed a dynamic mesh method based on Delaunay graph
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mapping. Van der Burg et al. [12] applied it to the aeroelastic problem in a high lift
study, in which the mesh deformation could be done ”in a couple of minutes” for a large
3D problem with 7 million tetrahedral cells using the Delaunay graph mapping method.
Though it is a fast interpolation scheme, this method cannot preserve well the mesh qual-
ity near the boundary for large deformation. Recently, Wang et al. [13] developed a new
method, which combines the Delaunay graph mapping method and the RBF method. It
manages to maintain the high efficiency of the Delaunay graph mapping method, while
significantly improves the mesh quality for large deformation; especially the mesh qual-
ity near the wall is well preserved.

Recently some hybrid methods were developed, which combine the physical analogy
and interpolation methods [14–17] to reduce the computational cost and maintain the
mesh quality. Gopalakrishnan [18] developed a hybrid method which combines spring
analogy and transfinite interpolation. Zhou and Li [19] developed a 2D dynamic mesh
method based on disk relaxation. Recently they further improved the method, and suc-
cessfully applied to 3D cases [20]. These methods show similar high quality mesh as the
RBF method and the IDW method. The efficiency is not as good as the fast interpolation
methods such as the Delaunay graph mapping method.

A novel method of dynamic mesh based on Delaunay graph and inverse distance
weighting (IDW) is presented in this paper. This method is mainly based on the ba-
sic framework of the Delaunay graph mapping method (DGM) [11], by introducing the
inverse distance weighting interpolation into the last mapping step of DGM, which ac-
quires the ability to control the quality of the meshes near the boundary. Several test
cases were compared with the RBF method, the IDW method and the Delaunay graph
mapping method, regarding both mesh quality and CPU time. This new method main-
tains the efficiency of the original Delaunay graph mapping method, while it also shows
high near wall mesh quality comparable to the RBF and IDW methods.

2 Delaunay graph based inverse distance weighting

interpolation method (DG-IDW)

2.1 Delaunay graph mapping method

In many CFD applications such as fluid structure interaction, aeroelastic problems, flap-
ping wing simulations and aerodynamic optimization, the Delaunay graph mapping
method [11] has been widely used, for its high efficiency and easy implementation. In
bio-fluid simulation [21], flapping wing simulation [22] and shock control aerodynamic
shape optimization [23], it efficiently deformed the mesh with quality cells for moderate
deformation. However, for large deformation, especially when the Delaunay graph be-
comes invalid after deformation, the mesh quality becomes invalid. In addition, due to
the lack of mesh quality control, the mesh quality near the wall may quickly degrade as
the mesh deforms significantly.
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2.2 Delaunay graph mapping method

The inverse distance weighting interpolation method was first developed by Witteveen
and Bijl [10]. It is an explicit method for multivariate interpolation of scattered points. By
using the known displacement of the boundary nodes, the displacement of the interior
nodes can then be calculated by interpolation. The boundary nodes are generally classi-
fied into two categories, one is static boundary normally referring the boundary without
any deformation; the other is deformed boundary referring the boundary involving de-
formation. The displacement of the interior nodes can be calculated by

s(x)=
∑

nd

i=1siri
−cd

∑
nd

i=1ri
−cd+∑

ns
i=1ri

−cs
, (2.1)

where s(x)= [dx,dy,dz]T the displacement of an interior node, x is the vector of coordi-
nate, nd is the total number of deformed boundary nodes, ns is the total number of static
boundary nodes, ri is the Euclidian distance between the interior node and boundary
node i. cd and cs are the user defined shape parameters for deformed boundary and
static boundary. si = [dxi,dyi,dzi]

T is the displacement of a boundary node i. Thus the
coordinates of the interior nodes can be calculated

xnew=xold+s(x). (2.2)

For different motions, cd and cs can be chosen differently. The resultant mesh quality
depends highly on the shape parameters. The proper setting of these parameters varies
from case to case and, therefore, it is difficult for beginners to properly choose the pa-
rameters. In addition, it requires summing up all the weights of surface nodes for each
mesh point, resulting in a significant computational cost. The motivation of this paper is
to develop a novel method to significantly improve the efficiency of the IDW method.

2.3 The procedures of Delaunay graph based IDW method (DG-IDW)

The procedure of the Delaunay graph based IDW method (DG-IDW) is similar to the
original Delaunay graph mapping method (DGM). The main difference is in the last step,
where the IDW function is used to map the nodes rather than using the area or volume
ratios as in the DGM. The algorithm is set out in the following procedure:

(a) Generating the Delaunay graph by using all the boundary nodes of the original mesh
(the original configuration and mesh was shown in Fig. 1 and Fig. 2 respectively, the
resultant Delaunay graph was shown in Fig. 3).

(b) Locating the mesh points in the graph, namely finding out which Delaunay trian-
gle contains which mesh node, in Fig. 4. It is noted that the first two steps (a) and
(b) are only needed once at the beginning of the unsteady simulation, though the
mesh needs to be renewed repeatedly. This is quite different from the original DGM
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Figure 1: Original configuration.

Figure 2: Original mesh.

method which requires generating the Delaunay graph repeatedly during the un-
steady simulation process. This will be further discussed in Section 3.1.
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Figure 3: Original Delaunay graph.

Figure 4: Identification of the nodes in the Delaunay graph.

(c) Moving the Delaunay graph according to the specified geometric motion/deformation,
in Fig. 5.
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Figure 5: Deformed configuration and Delaunay map.

(d) Mapping the mesh points in each Delaunay triangle according to the IDW interpola-
tion. The displacement and Euler angle of each node in a Delaunay triangle is
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For 3D it is
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where dx, dy, dz are the displacement due to the translation and shape deformation,
α, β, γ are Euler angles; where a= [7,7,1.4]T is for 2D, and a= [7,7,7,1.4,1.4,1.4]T is
for 3D. According to the numerical tests, the above setting can generally preserve the
mesh quality for all the test cases in this paper. Users can adjust these parameters to
control the size of the region around the moving body, and in which the high quality
mesh is well preserved. Larger value of a means larger region of mesh around the
moving body has a high quality mesh, but with a possible penalty of lower minimal
mesh quality; while smaller value of a means smaller region of mesh around the
moving body is well preserved but with a higher minimal mesh quality. User can
base on the flow feature to adjust this parameter to control the size of the region. s(x)

is the Euler angle and the displacement of the interior nodes due to both translation
and deformation, si is the displacement and Euler angle of a moving boundary node
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(a) one node on the static boundary (b) two nodes on the static boundary

(c) three nodes on the static boundary (d) no node on the static boundary

Figure 6: Four types of Delaunay triangles.

i in Delaunay triangle or tetrahedron. sd is the displacement and Euler angle of the
single moving boundary node in Delaunay triangle or tetrahedron. nd is the total
number of dynamic boundary nodes of a Delaunay triangle or tetrahedron, ns is the
total number of static boundary nodes of a Delaunay triangle or tetrahedron (for
2D, there are four different types of Delaunay triangles as shown in Fig. 6), ri is the
Euclidian distance between the interior node and boundary node i. rs is the distance
from the current position x to the single static boundary node of a Delaunay triangle/
tetrahedron; while rd is the distance from the current position to the single moving
boundary node of a Delaunay triangle/tetrahedron. Based on the displacement and
Euler angle the new position of the interior mesh nodes can be directly calculated
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Figure 7: Deformed mesh.

where
[

x0 y0 z0

]T
is the original coordinates. In Fig. 7 the deformed mesh was

shown where the meshes around the moving boundary were well preserved.

Steps 1-3 are exactly the same as the original Delaunay graph mapping method; hence
the details of these steps are skipped in this paper. More details can be found in [8]. In
Step 4, the IDW interpolation is used to calculate the displacement (or Euler angle) of the
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internal mesh nodes from the given displacement (or Euler angle) of the Delaunay trian-
gle nodes on the boundary, while the original Delaunay mapping method uses surface or
volume ratios to calculate the displacement of inner nodes.

3 Results and discussions

3.1 Test case 1: rotation and translation

The first test case is a structured mesh containing a rectangle object with 2340 nodes,
shown in Fig. 8(a). the original Delaunay graph was shown in Fig. 8(b). In this paper,
all the performances are measured on a single core 2.7GHz Intel i7 processor. The inner
rectangle was rotated around its center by 30◦, 45◦, 60◦, 90◦, respectively. For all the test
cases in this paper, the meshes were generated by only one mapping for fair comparison.
The mesh quality is compared with the Delaunay graph mapping method (DGM), the
inversed distance weighting method (IDW) and the radial basis function method (RBF)
in Tables 1 and 2. The detailed definition of mesh quality metric can be found in [24].
ft= 1 represents the best mesh quality and ft= 0 the worst. As can been seen from the
tables, the IDW method gave the best mesh quality for both averaged and minimal mesh
quality; while the Delaunay graph based inversed distance weighting method (DG-IDW)
shows second best averaged and minimal mesh quality for most of the cases. In Table 3,
the CPU time of the four methods were compared. The DGM and the DG-IDW show the
best efficiency, the CPU time of the two methods was 0.001s, while the CPU time of the
IDW is one order larger than the DGM and the DG-IDW methods; and the RBF method
is two orders larger than the DGM and the DG-IDW methods. In Fig. 9, the resultant
meshes generated by these four methods are shown, with 45◦ rotation. As shown in the
figures, only the DGM method failed to keep the mesh quality near the wall, while the

(a) (b)

Figure 8: (a) Original mesh; (b) original Delaunay graph.
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 9: The deformed mesh by different methods (rotation by 45◦).
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Table 1: Averaged mesh quality.

DGM IDW RBF DG-IDW

30◦ 0.885 0.970 0.954 0.952

45◦ 0.781 0.946 0.907 0.920

60◦ 0.676 0.919 0.851 0.884

90◦ - 0.863 0.739 0.814

Table 2: Minimal mesh quality.

DGM IDW RBF DG-IDW

30◦ 0.684 0.882 0.784 0.784

45◦ 0.408 0.768 0.580 0.627

60◦ 0.159 0.641 0.363 0.469

90◦ - 0.396 0.356 0.208

Table 3: CPU time.

DGM IDW RBF DG-IDW

30◦ 0.001 0.015 0.065 0.001

45◦ 0.001 0.016 0.062 0.001

60◦ 0.001 0.016 0.062 0.001

90◦ - 0.016 0.063 0.001

rest of the methods all maintained the mesh quality in this region. In Tables 1 and 2, it
is shown that the DGM method fails to give the valid mesh for 90-degree rotation, this is
because the Delaunay graph has become invalid after moving (in Fig. 10), therefore for
the DGM method the Delaunay graph needs to be regularly checked and regenerated for
the large deformation. However, for the DG-IDW method which used the same Delau-
nay graph still generated valid meshes as the IDW and the RBF methods. It is because
the DGM method uses the Delaunay triangle to move the volume mesh nodes, and these
nodes must stay inside the triangle after each mapping. When the Delaunay triangles
overlap with each other, the mesh becomes invalid. The DG-IDW method uses the De-
launay graph to divide the volume mesh nodes into different groups, and then applies
the IDW interpolation in each group. This can greatly decrease the computational cost of
the original IDW method. In addition, the volume mesh nodes are not confined inside
the Delaunay triangle any more, thus the validity of the Delaunay graph after moving
becomes irrelevant. Furthermore, different from the DGM method, the DG-IDW method
only needs to generate the Delaunay graph once at the beginning of the simulation to
divide the original mesh into groups.

For the same configuration and initial mesh, the inner rectangle is moved 2 units up-
wards and to the right. The mesh qualities are compared in Table 4. For the translation,
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Figure 10: Invalid Delaunay graph after 90-degree rotation.

the DGM method showed the best minimal mesh quality, while its averaged mesh qual-
ity is second worst; the RBF method gave high averaged mesh quality but with worst
minimal mesh quality; both average and minimal mesh qualities for the IDW method are
ranked at the third place. The DG-IDW method shows the best averaged mesh quality
and the second best minimal mesh quality. Therefore the DG-IDW method shows better
properties for the translation motion. In Fig. 11, the four resultant meshes are shown with
the mesh quality contours. Both the RBF and the DG-IDW methods maintain the mesh
quality near the moving boundary, while the DGM and IDW methods failed to maintain
the mesh quality in the same region. The CPU time are also compared in Table 4, in which
the DG-IDW and the DGM show again the highest efficiency.

Table 4: Mesh quality and CPU time comparison.

DGM IDW RBF DG-IDW

averaged 0.792 0.777 0.860 0.881

minimal 0.649 0.422 0.223 0.591

CPU time 0.001 0.033 0.107 0.001

3.2 Test case 2: unstructured mesh for NACA0012 airfoil

An unstructured mesh with 1647 nodes and 3054 cells for NACA0012 airfoil was used
as the second test case. The original mesh and its Delaunay graph are shown in Figs. 12
and 13. In order to test the capability of the four methods, a sliver cell is put right behind
the trailing edge, as shown in Fig. 13. Any slight degradation of the mesh quality may
cause the cell to become invalid. The airfoil is moved 2 units upwards and to the right.
The deformed meshes are shown in Figs. 14 and 15. As can been seen form the figures,
the RBF, DG-IDW and IDW methods maintain the mesh quality near the airfoil, while
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 11: The resultant mesh by different method (translation).
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Figure 12: Original Delaunay graph.

Figure 13: Original mesh.

the DGM method largely degrades the mesh quality in the same region. Particularly,
in Fig. 15 the mesh near the trailing edge is shown. The mesh generated by the DGM
method becomes invalid due to mesh overlapping. In Table 5, the mesh qualities are
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 14: The resultant mesh by different methods (translation).



1298 Y. Wang, N. Qin and N. Zhao / Commun. Comput. Phys., 21 (2017), pp. 1282-1309

Table 5: Mesh quality comparison.

DGM IDW RBF DG-IDW original

averaged 0.736 0.895 0.895 0.908 0.965

minimal -0.185 0.116 0.176 0.176 0.177

(a) DG-IDW (b) DGM

(c) IDW (d) RBF

Figure 15: The mesh quality contour near the trailing edge (translation).

compared. The DG-IDW method shows the best mesh quality for both averaged and
minimal mesh qualities.

The airfoil is then rotated by 45◦ with the deformed mesh shown in Figs. 16 and 17.
For the rotation, the DGM method failed to retain the mesh quality near the airfoil. The
low quality cells are all around the airfoil, which may cause significant numerical errors
in the viscous flow simulation. On the other hand, the IDW, RBF and DG-IDW methods
retain the mesh quality well near the airfoil. For rotation, the sliver cell behind the trailing
edge does not become invalid for all the methods after mesh deformation. In Table 6, the
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 16: The deformed mesh by different method (rotation).
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Table 6: Mesh quality comparison.

DGM IDW RBF DG-IDW original

averaged 0.942 0.927 0.923 0.933 0.965

minimal 0.151 0.162 0.176 0.177 0.177

(a) DG-IDW (b) DGM

(c) IDW (d) RBF

Figure 17: The mesh quality contour near the trailing edge (rotation).

mesh qualities are compared, in which the new method, i.e. the DG-IDW method, shows
the best results for both averaged and minimal mesh qualities.

4 Test case 3 twisted bar

To further test the capability of the method for cases with twist (not simple translation or
rotation), a structured mesh with 7520 nodes and 7308 cells is used, as shown in Fig. 18,
for a twist deformation. The deformed meshes by using different methods are shown in
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Figure 18: Original mesh.

Fig. 19. The DGM method and DG-IDW method show similar mesh quality contours,
in which the mesh quality near the boundary is well preserved. The IDW method fails
to maintain the mesh quality near the boundary. The RBF method largely maintained
the mesh quality near the boundary but at the two ends, the mesh quality quickly de-
generates. This means that for such deformation the DGM and DG-IDW methods can
well preserve the mesh quality. In Table 7, the mesh quality and CPU time are compared.
It is found that both the DGM and DG-IDW methods exhibit the best mesh quality and
efficiency.

Table 7: Mesh quality and CPU time comparison.

DGM IDW RBF DG-IDW

averaged 0.981 0.943 0.914 0.980

minimal 0.792 0.414 0.666 0.799

CPU time 0.001 0.202 0.405 0.001

In Fig. 20, four deformed meshes are compared in which the bar in the middle is
first twisted and then rotated by 45◦. It should be noted here again, these meshes are all
deformed by only one mapping without any middle steps. For this case, only the DG-
IDW method preserved well the mesh quality near the boundary, while the RBF method
partially preserved the mesh, similar as the previous case. The DGM method and IDW
methods do not preserve well the mesh near the boundary; especially the DGM method
leads to some low quality cells at the two ends of the bar. In Table 8, DG-IDW shows
the best averaged mesh quality and second best minimal mesh quality. For this case, the
RBF method showed the worst mesh quality among the four. From the efficiency point
of view, the DG-IDW and DGM methods are much faster than the other two methods.

From these two cases, it is found that for pure deformation, the DGM method can
maintain the mesh quality well; however it does not perform well for the large rotation



1302 Y. Wang, N. Qin and N. Zhao / Commun. Comput. Phys., 21 (2017), pp. 1282-1309

(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 19: Deformed mesh with mesh quality contour.
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 20: Deformed mesh with mesh quality contour.
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Table 8: Mesh quality and CPU time comparison.

DGM IDW RBF DG-IDW

averaged 0.793 0.828 0.747 0.879

minimal 0.185 0.356 0.141 0.262

CPU time 0.001 0.202 0.402 0.001

regarding mesh quality near the boundary. However, the DG-IDW method can preserve
the mesh quality well for both cases with a high efficiency. This is because, the DGM
method uniformly distributes the skewness caused by the rotation, but the RBF and IDW
methods are able to keep the skewness away from the moving boundary. As the combi-
nation of the DGM and IDW methods, the DG-IDW method inherits the characteristics of
the IDW method, therefore it can largely preserve the mesh quality as the RBF and IDW
methods do.

5 Moving mesh around a squeezed 3D sphere

As the first 3D case, a squeezed sphere is used, as shown in Fig. 21. To test the efficiency
of the different methods, three different meshes from coarse to fine are shown in this
case. In Table 9, the CPU time is compared. The DGM method is shown to be the most
efficient, while the DG-IDW method is only slightly worse. Both the IDW method and
RBF method are very time consuming, especially for the RBF method. As the mesh size
increases, the required CPU time and memory for these two methods quickly become
unaffordable. The required CPU time for the DG-IDW and the DGM methods in com-
parison can be divided into three parts. The first part is the generation of the Delaunay
graph, of which the cost is normally Nbp log(Nbp), where bp refers to number of bound-
ary points. The second part is the identification process which is NsNvp where Ns is the

Figure 21: Original mesh.
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Table 9: Mesh quality and CPU time comparison.

Total nodes Total boundary nodes DGM IDW RBF DG-IDW

1 201,920 10,096 0.099s 485.105s 11692.154s 0.143s

2 403,840 10,096 0.172s 955.096s - 0.237s

3 826,080 41,304 0.359s 8295.252s - 0.451s

number of searches (according to the numerical test the Ns is normally less than 10 for
3D) [13,25], and vp stands for volume points. The computational costs of these two parts
are exactly the same for the DGM and the DG-IDW methods. But luckily for the DG-IDW
method, these two parts only need once for the whole unsteady simulation or optimiza-
tion, thus the required information for the DG-IDW can be saved and used as an input file
to generate different meshes. The third part is the mapping process in which the cost is
Nv p for both the DGM and the DG-IDW methods. The cost of the IDW method, however,
is NbpNvp. Form the computational complexity point of view, it is clear that the cost of
the DG-IDW method is similar as the DGM method, but more inexpensive than the IDW
method. In practical term, however, due to the repeated generation and validation check
of the Delaunay graph, the DGM method is less efficient than the DG-IDW method.

The mesh quality contours for the small size mesh are shown in Fig. 22 and the mesh
quality is compared in Table 10. From the figures, it is noted that the DG-IDW method
can largely preserve the mesh quality near the squeezed sphere, while the rest of the
methods slightly degrade the mesh quality. Especially, the IDW method causes some low
quality cells near the sphere. As can be seen from the table, the DG-IDW method shows
better overall mesh quality among the four.

Table 10: Mesh quality and CPU time comparison.

DGM IDW RBF DG-IDW

averaged 0.845 0.880 0.833 0.836

minimal 0.552 0.414 0.705 0.613

6 Deformed mesh around a wing-body configuration

An unstructured mesh with 257,909 nodes and 1,507,462 tetrahedrons based on a wing-
body configuration was tested by the proposed DG-IDW method. The initial and de-
formed configurations are shown in Fig. 23, in which the wing is folded by 20◦. The total
CPU time for the DGM method is 0.503s, while for the DG-IDW method, it is 0.510s. The
mesh quality ratio of the deformed mesh is shown in Fig. 24. For a fair comparison, the
ratio of the mesh quality ( ft1/ ft0 ) is applied, where ft0 is the mesh quality of the origi-
nal mesh, and ft1 was the mesh quality of the deformed mesh. The ratio near the wing
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(a) DG-IDW

(b) DGM

(c) IDW

(d) RBF

Figure 22: Deformed mesh with mesh quality contour.



Y. Wang, N. Qin and N. Zhao / Commun. Comput. Phys., 21 (2017), pp. 1282-1309 1307

Figure 23: Wing-body configurations, (left) original, (right) deformed.

Figure 24: Mesh quality ratio contours ( ft1/ ft0 ) of the deformed mesh.

was all above 0.85, considering the relative large deformation, which suggests that the
DG-IDW method maintains good mesh quality of the original mesh.
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7 Conclusions

A novel dynamic mesh deformation method is developed based on the combination of
the Delaunay graph mapping method with inverse distance weighting interpolation. It
maintains the high efficiency of the original Delaunay graph mapping method with im-
provement of the mesh quality. In particular, the mesh quality near the boundary is well
preserved, which is very important for high Reynolds number viscous flow simulation.
For large rotation deformation, the DGM method fails to preserve the mesh quality. The
new method overcomes this problem without sacrificing the efficiency of the Delaunay
graph mapping method, which is significantly faster than both the IDW and the RBF
methods. The near wall mesh quality of this method is similar or even better in some
cases than the IDW and the RBF methods.
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