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Abstract. An idea of designing oscillation-less and high-resolution hybrid schemes is
proposed and several types of hybrid schemes based on this idea are presented on
block-structured grids. The general framework, for designing various types of hybrid
schemes, is established using a Multi-dimensional Optimal Order Detection (MOOD)
method proposed by Clain, Diot and Loubère [1]. The methodology utilizes low dis-
sipation or dispersion but less robust schemes to update the solution and then im-
plements robust and high resolution schemes to deal with problematic situations. A
wide range of computational methods including central scheme, MUSCL scheme, lin-
ear upwind scheme and Weighted Essentially Non Oscillatory (WENO) scheme have
been applied in the current hybrid schemes framework. Detailed numerical studies
on classical test cases for the Euler system are performed, addressing the issues of the
resolution and non-oscillatory property around the discontinuities.
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1 Introduction

When solving nonlinear hyperbolic conservation laws, how to achieve both the high res-
olution and the non-oscillatory property around the discontinuities may remain one of
the most important questions. It is well known that interpolations across discontinuities
tend to generate spurious oscillations that can ultimately lead to a failure of the com-
putation. And there has been an abundance of work to deal with the conflict between
keeping the high accuracy of the solutions and stabilizing the computation. Among all
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popular techniques we can cite MUSCL (monotone upstream scheme for conservation
law) methods [2], weighted essentially non-oscillatory (WENO) schemes [3, 4] and cen-
tral schemes [5].

MUSCL method was developed by van Leer [2] to construct high resolution total vari-
ation diminishing (TVD) schemes for solving hyperbolic conservation laws. Due to the
ability to preserve stability, monotonicity as well as greater order of accuracy, MUSCL
methods have become a standard widely used in todays commercial codes. For flows
with strong shock waves, the use of limiters becomes necessary for preventing solution
overshoots that may compromise accuracy and stability. However, it is well-known that
no classical limiter has been found to work well for all problems. Indeed, some effi-
ciently capture discontinuities but bring about some squaring effect on smoother waves,
whereas other ones are accurate on smooth waves but more dissipative for sharp gradi-
ents [6]. WENO schemes utilize an adaptive stencil based on the local smoothness of the
numerical solution to achieve high accuracy while avoiding oscillations near discontinu-
ities. Higher-order WENO schemes have been constructed [7] for reducing numerical
diffusion and their superior accuracy over low-order schemes for smooth flows has been
demonstrated. However there are also some drawbacks of high-order WENO schemes,
such as suboptimal convergence for a class of smooth solutions as well as excessive dissi-
pation across discontinuities. For example, a characteristic-based MUSCL scheme shows
better resolution for the contact discontinuity than a fifth-order WENO scheme [8]. As
an alternate strategy, central schemes [5] achieve nonlinear stability through the use of
artificial-dissipation models. The major difficulty in central schemes is making sure that
a sufficient amount of stabilizing diffusion is added wherever it is needed to ensure sta-
bility, while in the rest of the computational domain the diffusion must be small enough
not to affect the high accuracy of the scheme there. However the central schemes usually
contain the artificial coefficients that are both mesh- and problem-dependent. Worse yet,
there is no any guide line regarding the choice of these artificial coefficients.

A natural idea is then to develop schemes that combine the advantages of different
schemes described above and avoid the disadvantages inherent in each method. Such
so-called hybrid schemes have been constructed in the literature [9–14] and most of the
researches utilize schemes either with spectral-like resolution [9–11] or schemes with a
high order of accuracy and high efficiency in smooth regions [12–14] and then hybridize
the ENO/WENO schemes to handle discontinuities. More importantly, an important
component of all present hybrid schemes is using an indicator to automatically identify
the discontinuity of the solution where the shock-capturing schemes can be applied. The
Ref. [14] has systematically investigated a wide range of such indicators, although effi-
cient and reliable indicators are still warranted today. Inspired by the previous work, the
objective of this paper is to establish a general framework for designing various types of
hybrid schemes with emphasis on achieving the high resolution and oscillation-free prop-
erty around discontinuities. The novelty is to construct hybrid schemes based on a new
concept of MOOD approach, which was originally proposed in [1] and further extended
in the following studies [15–18]. Based on the MOOD concept, the resulting approach
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does not use any indicator in designing hybrid schemes. We first utilize low dissipation
or dispersion but less robust schemes to update the solution and then implement robust
and high resolution schemes to deal with problematic situations. A wide range of com-
putational methods including central scheme, MUSCL scheme, linear upwind scheme
and WENO scheme have been applied in the current hybrid schemes framework. Also
different from the published methods, the present work employs a carefully designed
TVD scheme to deal with problematic solutions, since this scheme has shown the high
resolution on the discontinuity based on our previous research [8, 19].

The rest of the paper is organized as follows. Section 2 briefly introduces the gov-
erning equation and the finite volume (FV) formulation applied in the work. Section
3 describes the details of designing several types of hybrid schemes in the developed
framework. Numerical tests are carried out in Section 4 and some conclusions are drawn
in Section 5.

2 The governing equation and the finite volume discretization

2.1 Governing equations

Let us now consider the nonlinear system of hyperbolic conservation laws in multiple
space dimensions of the form

∂Q

∂t
+

∂F(Q)

∂x
+

∂G(Q)

∂y
+

∂H(Q)

∂z
=0, (2.1)

where Q are conservative variables, F(Q), G(Q) and H(Q) are flux vectors depending
on state Q in Cartesian coordinates, and t means time.

In this paper, we solve the system of equations (2.1) by using the finite volume method
on multi-block structured grids. Firstly, the computational domain is discretized by a grid
of conforming elements Ωi,j,k. The subscript ”i, j,k” is used to indicate the numbering of
the cell in the 3D structured grids.

The numerical solution of Eq. (2.1) for the conservative variables Q is represented
within each cell Ωi,j,k by cell average Q̄i,j,k defined as

Q̄i,j,k =
1

V

∫

Ωi,j,k

Q(x,y,z,t)dΩ, (2.2)

where V is the cell volume. Then Eq. (2.1) is integrated over Ωi,j,k to obtain

dQ̄i,j,k

dt
+

1

V

∫

∂Ω

~F ·~nds=0, (2.3)

where ~F =(F(Q),G(Q),H(Q)) is inviscid flux tensor and~n is the outward unit normal
vector to the boundary ∂Ω of the cell Ωi,j,k. Then, the flux ~F ·~n is replaced by a numerical
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approximation of convective flux at the interface as

~F ·~n= F̂(QL,QR,~n), (2.4)

where QL and QR are the solution states on the left and right sides of the interface. De-
pending on the way the convective flux of the interface is approximated, the class of FV
schemes can be split into two subclasses: upwind schemes and central schemes.

2.2 FV discretization: upwind schemes and central schemes

Upwind schemes, in their most popular form, are usually implemented in two stages:

1. A reconstruction stage which obtains a representation of the solution surface given
cell-averaged data;

2. The reconstructed variables on either side of the interface are interpreted for ap-
proximate Riemann solvers.

For the hybrid schemes addressed here, the issues are independent of the choice of
the Riemann solvers and an approximate Riemann solver of Roe [20] is employed in this
work. As for the reconstruction stage, monotonicity principles are invoked to capture the
discontinuities without causing spurious oscillations. The procedures of the reconstruc-
tion for present work include the linear reconstruction (the 3rd-order and the 5th-order
accuracy), the MUSCL method (either variable-based or characteristic-based), and the
variable-based WENO method, which will be described in detail in Subsections 3.2-3.4.

As an alternate strategy, central schemes treat discontinuities as smooth solutions but
with large gradient. In order to do so, numerical dissipation models are required in the
central scheme. And the convective flux F̂ in Eq. (2.4) can be decomposed into the pure
central part and the artificial dissipation

F̂=Fc−Fad. (2.5)

As mentioned earlier, artificial dissipation models are detrimental to the performance of
central schemes. And this work will prove that the designed hybrid schemes based on
the central schemes can be much more reliable and accurate compared with the original
methods.

After the FV discretization of the governing equation by using either upwind or cen-
tral schemes, the resulting system of ordinary differential equations (2.3) is discretized in
time by a third-order version of TVD Runge-Kutta method [4].

3 Several types of oscillation-less and high-resolution hybrid

schemes

The approach in this section is to describe first the general framework for designing hy-
brid schemes, and then move on to present several different types of hybrid schemes that
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have been designed to achieve both the high resolution and the oscillation-less property
around discontinuities.

3.1 General framework for designing hybrid schemes based on the MOOD
concept

Most of the aforementioned hybrid schemes have a common feature that an indicator
is relied on to identify the locations where the shock-capturing schemes are needed.
While vast literatures on designing such indicators exist, according to the exploration
in [14] there is no universally better performing method for every problem. Recently,
the Ref. [18] has reviewed these indicators or limiters in the framework of discontinuous
Galerkin (DG) and classified them as a priori detecting, which means such indicators as
well as limiters rely on the fact that spurious numerical oscillations can be detected and
corrected in the discrete solution by looking at only one time step and usually without
using the PDE.

On the contrary, the concept of MOOD approach, originally proposed in [1] and fur-
ther extended in the following studies [15–18], is known as an a posteriori detection ap-
proach. By looking at two different time levels and recomputing the solution, the detec-
tion criterion has been proven to be able to dissipate numerical oscillations and ensure
stability. Therefore this work has proposed to construct hybrid schemes based on this
new MOOD approach.

Now we catalogue the details of the hybrid schemes which are built on the MOOD
approach. We consider the simple case of each explicit sub-step discretization of the TVD
RungeKutta method which corresponds to a convex combination of several explicit steps.

We assume that Qn is an approximation of conservative variables Q at time tn, and the
goal is to build the solution Qn+1 at time tn+1 = tn+∆t. To this end, the hybrid schemes
proceed as follows:

Firstly, we utilize low dissipation or dispersion but less robust schemes to compute a
solution using the finite volume discretization (2.4), also known as obtaining the candi-
date solution Q∗(tn+1) by

dQ∗

dt
+Rhsoriginal(Q

n)=0, (3.1)

where Rhsoriginal denotes the residual term obtained by the original scheme that is low
dissipation or dispersion but less robust as mentioned earlier. Note that this step in the
approaches of hybrid schemes is different from the procedure proposed in the references
of MOOD schemes [1, 18], where an unlimited high order scheme is used to compute
the candidate solution Q∗. Currently, we design hybrid schemes that still hybridize two
types of schemes, therefore the techniques adopted here may not be the same as the full
successive order decrementing loop adopted in the original MOOD approaches.

Secondly, once the candidate solution Q∗ is obtained, the detection criteria of physical
admissibility and numerical admissibility are immediately applied. The physical admis-
sibility restricts that physically relevant quantity, such as the density ρ and the pressure
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p for the Euler equations, must satisfy the positivity constraint. For the FV method, here
we apply physical admissibility for cell average over each cell as

ρ̄(Q∗)>0, p̄(Q∗)>0, (3.2)

which is simple because no reconstructed values at quadrature points have to be consid-
ered.

Meantime the numerical admissibility restricts that the candidate solution must sat-
isfy the discrete maximum principle (DMP). Like the Ref. [18], we use the relaxed version
of a discrete maximum principle

min(Q̄
n
m(t

n))−δ< Q̄
∗
ijk(t

n+1)<max(Q̄
n
m(t

n))+δ, m∈ ν̄ijk , (3.3)

where ν̄ijk is a set containing cell I ijk together with its Voronoi neighbor cells that share a
common node with cell I ijk. Again for the FV method, numerical admissibility has been
applied for cell average over each cell. Also according to [18], the quantity δ is used to
relax the strict maximum principle and is obtained as

δ=max
(

10−4,10−3 ·
(

max(Q̄
n
m)−min(Q̄

n
m)

)

)

, m∈ ν̄ijk . (3.4)

After applying the physical admissibility and numerical admissibility detection, a cell
is marked as one of the three types of cells: the original cell, the recomputed cell or the
reassembled cell. To be specific, if the candidate solution of the cell fails to fulfill either
Eq. (3.2) or Eq. (3.3), the cell is marked to be recomputed. Then for those cells that share
a common face with the recomputed cells and meantime fulfill the detection criteria in
both the Eq. (3.2) and the Eq. (3.3), they are marked to be reassembled. At last, the rest of
the cells are marked as the original cell.

Thirdly, the solution Qn+1 can be finally obtained by different numerical schemes in
accordance with the cell type marked by the procedure described above. It is evident
that for the ”original” cells, Qn+1 = Q∗ that is directly obtained from the Eq. (3.1). It is
more challenging to deal with problematic solutions for the ”recomputed” cells, because
it requires a shock-capturing scheme that is robust, oscillation-free therefore to handle
problematic situations and meantime has high accuracy and/or high resolution charac-
teristics therefore to capture fine flow structures. Once the shock-capturing scheme is de-
termined, the solution Qn+1 for the ”recomputed” cells is recomputed from the Eq. (3.5)
using the solution at time tn. At last, the residuals of the ”reassembled” cells only need to
reassemble: for those faces connected to the ”recomputed” cells the recomputed convec-
tive flux of the interface is chosen, otherwise the original convective flux of the interface is
chosen. Thus the solution Qn+1 for the ”reassembled” cells is obtained from the Eq. (3.6)
using the reassembled residual term

dQn+1

dt
+Rhsrecomput(Q

n)=0, (3.5)

dQn+1

dt
+Rhsreassemble(Q

n)=0. (3.6)
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Remark 3.1. The idea behind the present framework for designing hybrid schemes is by
taking advantage of the concept of MOOD method, the construction of hybrid schemes
is completely turned into the construction of different numerical flux for the interface
between the cells. As can be seen, the solution is obtained either from Eq. (3.1) or from
Eq. (3.5) or Eq. (3.6), where the only difference is the different evolution procedures for
the interface flux. As a result, theoretically any numerical scheme can be applied in the
current hybrid schemes framework. For instance, this work has designed hybrid schemes
that combine the central scheme and the upwind scheme, two very different numerical
schemes in the FV discretization, and has proved its superior performance owing to this
combination.

Remark 3.2. There are three major differences between the present hybrid schemes and
the original MOOD methodology [1]. First, one or both of the building blocks is/are
shock capturing scheme(s) with a priori limiter instead of unlimited MUSCL methods
in the original algorithm. Secondly, the original MOOD scenario uses full successive
order decrementing loop while the method in this paper only hybridizes two types of
schemes, which therefore uses only one loop. In the original MOOD scenario, the DMP
is of important concern. Although the adopted characteristic-based MUSCL scheme is a
robust shock-capturing scheme, we admit that there is still no guarantee in attaining the
DMP property like the original MOOD with substantial theoretical analysis. Thirdly, the
present method adopts a relaxed version of DMP, as can be seen from Eq. (3.3), where
δ is to relax the strict maximum principle in order to allow some small overshoots and
undershoots [18]. In authors opinion this may also have caused influence on the DMP
property of the present method because some cells can be marked as the original cell
though they may violate the strict maximum principle.

3.2 Shock-capturing schemes: characteristic-based MUSCL scheme

As mentioned in previous subsection, it is more challenging to deal with problematic
solutions for the ”recomputed” cells. The basic guild line is choosing schemes that
are robust, oscillation-free and meantime with high accuracy and/or high resolution
characteristics. Although most of hybrid schemes in the literature [9–14] hybridize the
ENO/WENO schemes to do the job, the present work employs a characteristic-based
MUSCL scheme based on our previous research [8, 19] on the comparison of these two
types of schemes.

MUSCL interpolation can be written as

QL
i+1/2= Q̄i+

1

2
∆Qi,

QR
i+1/2= Q̄i+1−

1

2
∆Qi+1,

(3.7)

where QL
i+1/2 and QR

i+1/2 are left and right variables at interface, and Qi is the variable
slope in cell i.
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Most high resolution schemes are derived on scalar conservation laws first, and then
extended to systems of equations, which bring on the issue of working variables. There
are a number of options available, including conservative, primitive and characteristic
variables. According to Ref. [21], the choice of working variables can have a great im-
pact on computation results. Characteristic decomposition is chosen here to suppress
spurious oscillations. First, conservative variables are projected to characteristic space by

W j =LiQj, j= i−1,i,i+1. (3.8)

Then, the slope of characteristic variables in cell i is determined as

∆W i= ϕ(∆W i−1/2,∆W i+1/2), (3.9)

where ϕ represents limiter, and ∆W i+1/2=W i+1−W i.
Finally, we have

∆Qi=Ri∆W i, (3.10)

Li and Ri are the left and right eigenvector matrices of the Jacobian matrix Ai of F(Q).
There are various ways for computing Ai. In this paper, we adopt a local linearization

method [19], which ensures that Li and Ri are strictly conjugate inverse matrices and nu-
merical errors from the transformation procedures can be effectively reduced. The choice
of limiter ϕ in Eq. (3.9) is a crucial part. It is known that two types of waves, convective (or
linear) waves and acoustic waves are differentiated when one performs the projection of
the conservative variables into characteristic space. With the characteristic-based MUSCL
scheme, the most compressive superbee limiter is used on the characteristic variables that
are connected to convective (or linear) waves to obtain high resolution for contact discon-
tinuities, while the double minmod limiter is used on the characteristic variables that are
connected to acoustic waves to enhance stability. This MUSCL scheme is able to avoid
the over compression of superbee limiter to contact discontinuities, as well as to maintain
good robustness with relatively low computation cost.

3.3 Hybrid schemes using the MUSCL and WENO method

When constructing hybrid schemes, one usually looks for higher order methods to
achieve more accurate simulation for various flow features. However today the second-
order MUSCL methods are widely-used standard in industrial finite volume codes, hence
it is important to construct a hybrid scheme composed of two MUSCL schemes and
meantime it is important to prove the resulting hybridization can significantly improve
the performance of standard second-order method.

As formulated in Eq. (3.7), an important aspect of MUSCL scheme is limiters that
obtain the variable slope ∆Q. And it is well-known that superbee limiter is the least dis-
sipative and also least stable limiter in the classical limiters. Furthermore different from
characteristic-based MUSCL scheme, which is carefully designed for shock-capturing,
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the most popular technique adopted in classical limiters is based on primitive variables.
Therefore our first hybrid scheme is the hybridization of MUSCL scheme using primitive-
variable based superbee limiter and the shocking-capturing scheme developed in Subsec-
tion 3.2.

The second hybrid scheme involves a WENO-like scheme. And this implementa-
tion of WENO is quite different from the traditional high order method for FV compu-
tation such as the work in [26, 27]. First, for two- and three-dimension problems there
are essentially two ways for the reconstruction: genuine multidimensional reconstruc-
tion and dimension-by-dimension reconstruction. The genuine multidimensional recon-
struction considers all cells in the multidimensional stencil simultaneously to build up
a reconstruction polynomial, whereas dimension-by-dimension reconstruction consists
of a number of one-dimensional reconstruction sweeps. The dimension-by-dimension
reconstruction is much simpler and less computationally expensive than the genuine
multidimensional one; this is especially so in three space dimensions [26]. Therefore,
in this work we use dimension-by-dimension reconstruction. Besides, regarding quadra-
ture points, current implementation chooses the strategy in [22], where the WENO recon-
struction is only used to increase the spatial order of primitive variable interpolation to
cell interface in a form analogous to MUSCL scheme, this is also different from traditional
method [15,16,26,27] where the Gaussian integration points are usually invoked. The re-
sulting WENO scheme is variable-based and is applied component by component instead
of the characteristic decomposition. The WENO-like implementation in the paper should
only have numerical benefits by borrowing the form of the WENO5 scheme, but have the
second- other than the fifth-order theoretically. And as a result only a small amount of ad-
ditional cost is gained though the characteristic of the original WENO method cannot be
completely realized. And in authors opinion, it may be both the implementation strategy
(in particular without the characteristic decomposition) and the quadrature strategy that
have caused oscillatory results with present WENO method, especially when one con-
siders more demanding test problems or when the order of accuracy of reconstruction is
high.

Taking QL
i+1/2 as an example, the WENO interpolation is given by

QL
i+1/2=ω0q0+ω1q1+ω2q2,

q0=
1

3
Q̄i−2−

7

6
Q̄i−1+

11

6
Q̄i,

q1=−
1

6
Q̄i−1+

5

6
Q̄i+

1

3
Q̄i+1,

q2=
1

3
Q̄i+

5

6
Q̄i+1−

1

6
Q̄i+2,

(3.11)

where q0, q1 and q2 represent three third order stencils, which are combined with nonlin-
ear weights ωk to form a fifth order interpolation. The expressions of nonlinear weights
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ωk are given by

ωk=
αk

α0+α1+α2
, (3.12)

αk =
Ck

(ε+ ISk)
2

, k=0,1,2, C0=0.1, C1=0.6, C2=0.3, (3.13)

where ε= 10−6 and Ck are optimal weights yielding a truly high-order algorithm in the
smooth region.

The two hybrid schemes in this subsection have a common feature: the scheme used
to obtain the candidate solution is the upwind scheme with the shock-capturing capabil-
ity. In the current framework, we develop this type of hybrid schemes to demonstrate the
capability of the hybridization in simultaneously retaining the advantage and remedying
the defect of the original method. In particular we will show the hybrid schemes can gain
the high resolution and non-oscillatory property around discontinuities.

3.4 Hybrid schemes using linear reconstruction method

The second type of hybridization is to combine high order linear reconstruction method
with the present shock-capturing scheme, which is similar to the work in [14], although
the work in [14] has been performed in the finite difference framework and has used
5th-order WENO method with priori detecting indicators.

In the FV discretization, the linear reconstruction is applied in a form very analogous
to the WENO scheme. For instance the 5th-order linear interpolation can be written as:

QL
i+1/2=C0q0+C1q1+C2q2, (3.14)

where q0, q1 and q2 are three third order stencils from Eq. (3.11) and C0, C1 and C2 are op-
timal weights from Eq. (3.11). Similarly we also adopt the 3rd-order linear reconstruction
in this work as follows:

QL
i+1/2=C0q0+C1q1, C0=

1

3
, C1=

2

3
,

q0=−0.5Q̄i−1+1.5Q̄i, (3.15)

q1=0.5Q̄i+0.5Q̄i+1,

where q0 and q1 are two second order stencils and C0 and C1 are optimal weights for the
3rd-order linear reconstruction.

The reconstructions in Eq. (3.14)-(3.15) are upwind linear reconstructions and hence
the resulting schemes are denoted as UP3 and UP5 schemes in the paper. Note that there
are other choices also applicable in the current framework including a low phase error
fourth-order formula

QL
i+1/2=(9Qj−2−56Qj−1+194Qj+104Qj+1−11Qj+2)/240
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or even an implicit formula

(

3QL
i−1/2+6QL

i+1/2+QL
i+3/2

)

/10=
(

Qj−1+19Qj+10Qj+1

)

/30.

3.5 Hybrid schemes using central schemes

The previously designed two types of hybrid schemes are the combination of two up-
wind schemes and this subsection will present the third type of hybrid scheme that in-
cludes both the central scheme and the upwind scheme.

As formulated in Eq. (2.5), the convective flux F̂ of the central schemes is decomposed
into the pure central part and the artificial dissipation. The development of artificial dis-
sipation term Fad has drawn most attention because it is detrimental to the performances
of central schemes. However here we just choose the basic algorithm developed in the
seminal work of Jameson et al. [5]. This artificial dissipation term Fad contains a blending
of the second-difference and fourth-difference terms and is expressed as

Fad,i+1/2=λi+1/2

(

ε
(2)
i+1/2δQ−ε

(4)
i+1/2δ3Q

)

i+1/2
, (3.16)

where δQi+1/2=Qi+1−Qi, δ3Qi+1/2=Qi+2−3Qi+1+3Qi−Qi−1 and λ is the spectral radii
of the Jacobian matrix.

In the models, the contributions from the second-difference and fourth-difference are
controlled by two parameters, ε(2) and ε(4), respectively. They are computed as

ε
(2)
i+1/2= k(2)max(νi,νi+1),

ε
(4)
i+1/2=max

[

0,(k(4)−ε
(2)
i+1/2)

]

,
(3.17)

where is a shock sensor in the form of

νi =
|pi+1−2pi+pi−1|

pi+1+2pi+pi−1
. (3.18)

As can be seen in Eq. (3.17), there are two user-specified constants k(2) and k(4). And
the central schemes can work well only when this set of parameters are well-tuned. How-
ever there is no any guide line regarding the choice of these parameters. In order to over-
come this difficulty in central schemes, the third type of hybrid scheme is suggested here.
Our method is to implement central schemes with a low dissipation/dispersion to obtain
candidate solution and then use characteristic-based MUSCL scheme to handle the prob-
lematic solutions. Since the artificial-dissipation models are no longer responsible for the
capture of discontinuous solutions, the burden on the choice of artificial coefficients can
be much alleviated and even can be completely removed. In fact, current work has fixed
k(2)=0.05 and k(4)=0.008 for all test cases listed in Section 4 when using the third type of
hybrid scheme.
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3.6 Further remark on the designed hybrid schemes

Remark 3.3. The general framework for hybrid schemes is built on the concept of MOOD
approach. By reformulating the approach as the hybridization of different numerical flux
of the interface, any numerical scheme, with either low dissipation/dispersion charac-
teristic or good shock-capturing ability, can be applied in the current framework. No
prior detecting indicators are needed for the resulting approach. And moreover, com-
pared to previous studies [9-14] that mainly concentrates on high order schemes, this
work also includes the second-order schemes, such as the MUSCL scheme and the cen-
tral scheme, with emphasis on achieving significant performance improvement over the
original method.

Remark 3.4. Though the present method is performed on block-structured grids, the ba-
sic idea and the general framework for designing hybrid schemes are not restricted to the
type of grids. We develop hybrid schemes on structured grids because some schemes,
for example high order WENO and linear reconstruction schemes, are more easily con-
structed on structured grids.

Remark 3.5. The emphasis of the present implementation has been mainly focused on
achieving significant performance improvement over the original FV schemes. And the
mathematical property of current method will depend on the property of two specific
schemes that are adopted in the hybridization. Take hybrid WENO for example, it can
achieve essentially non-oscillatory property since the solutions are obtained either by
the WENO scheme or a less oscillatory shock-capturing scheme. However since the
basic idea for our proposed hybrid schemes is taking full advantage of a low dissipa-
tion/dispersion characteristic from the original methods and a good shock-capturing
ability from the shock-capturing methods (i.e. the characteristic-based MUSCL scheme
in this work), therefore for all designed hybrid schemes, the current implementation will
possess the property of preserving high accuracy in the smooth regions of the solution
and simultaneously achieving oscillation-less, high resolution characteristics around dis-
continuities.

4 Numerical results

In this section, the accuracy test for the hybrid schemes is carried out first, and then some
typical numerical examples for Euler system are presented to demonstrate the perfor-
mance of the designed hybrid schemes. As mentioned in Subsection 3.1, a third order
TVD RK scheme [4] is applied as the time stepping scheme and a CFL number 0.3 is used
for all considered cases.

4.1 Accuracy test

We first test the capability of the method to achieve the desired accuracy for the Euler
equations. The exact solution is given by ρ= 1+0.2sinθ, u= 1, v= 1, p= 1, θ = x+y−t.
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Figure 1: Convergence rates of the designed several types of hybrid schemes.

The convergence test is conducted on the spatial domain [−π,π]×[−π,π] from the time
T=0 to T=0.2. The meshes used in this study are single block meshes, for the coarsest
case with cell size h=π/5. The errors presented are those of the cell averages of density.

Fig. 1 provides the comparison on convergence rates of the hybrid schemes based on
the superbee, WENO, UP3, UP5 and central schemes, respectively. It can be seen that the
hybrid schemes give the desired convergence rates, demonstrating that for the smooth
solution problem the designed order accuracy can be achieved using the current hybrid
schemes.

4.2 Sod problem

The hybrid schemes are applied to one-dimensional shock tube problem. The computa-
tional domain contains 101 vertices in the x-direction. The initial conditions are

(ρ,u,p)=

{

(1,0,1), x<0,

(0.125,0,0.1), x≥0.
(4.1)

In order to examine the capability of the hybrid methods, for this and the following
cases, we compare the first and third type of hybrid schemes with their corresponding
original schemes, while for the second type of hybrid schemes we compare them with
the current WENO-like scheme without hybridization. And when the original central
schemes are applied, two sets of parameter: k(2)=0.05, k(4)=0.008 and k(2)=0.3, k(4)=0.03
are used.
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Figure 2: Density profiles of solutions to the Sod problem obtained by the first type of schemes: left: superbee;
right: WENO-like.
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Figure 3: Density profiles of solutions to the Sod problem obtained by the second type of schemes: left: UP3;
right: UP5.

Now we see the density result at t=2 in Figs. 2-4 which also show the details on the
computational zone [0,2]. Note that in the right figure of Fig. 2, the results by the cur-
rent WENO-like scheme appear a little oscillation. Here the results are different from
that in original references [26, 27]. As we mentioned in Section 3.3, it is mainly be-
cause the current implement of WENO is in a much simplified way compared with the
traditional method with respect to both the implementation strategy (especially with-
out the characteristic decomposition) and the quadrature strategy. The hybrid superbee
scheme reduces the oscillations around the contact discontinuity and the hybrid WENO
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Figure 4: Density profiles of solutions to the Sod problem obtained by the third type of schemes: left: hybrid

schemes compared with original method with k(2)=0.3, k(4)=0.03; right: hybrid schemes compared with original

method with k(2)=0.05, k(4)=0.008.

scheme obtains the completely oscillation-free solution profile. The second type of hy-
brid schemes also achieve oscillation-free characteristic and the accuracy of UP3/UP5 is
comparable/superior to current WENO-like scheme, see for example the details around
x =−2.4, x =−0.1, x = 1.8 and x = 3.5. For the central scheme, the performance of the
method is obviously improved by the hybridization. We see the hybrid central scheme
succeeds in both the stabilization of the discontinuities and the preservation of the low
diffusion.

4.3 Blast-wave interaction

In order to examine the robustness across strong shock waves, the interaction of blast
waves [23] is considered. The computational domain is [0,1] with 400 zones and the
initial conditions are

(ρ,u,p)=











1,0,1000, 0.0< x<0.1,

1,0,0.01, 0.1< x<0.9,

1,0,100, 0.9< x<1.0.

(4.2)

The computation is stopped at t=0.038. Density results are given in Figs. 5-9, where
the exact solution is obtained with a finer grid solution of 2000 points. Figs. 5-9 also show
the details on the extrema and the discontinuities. Again the reason of oscillatory results
with the WENO-like scheme is due to the much simplified implementation of current
WENO method. In authors’ opinion, it may be both the implementation strategy (in par-
ticular without the characteristic decomposition) and the quadrature strategy that have
caused oscillatory results of the WENO-like scheme for this demanding test problem.
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Figure 5: Density profiles of solutions to the blast-wave interaction obtained by the hybrid and original superbee
schemes, left: global solution with close view on the extrema; right: local details around discontinuities at
x=0.6 and x=0.85.
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Figure 6: Density profiles of solutions to the blast-wave interaction obtained by WENO-like scheme with
and without hybridization left: global solution with close view on the extrema; right: local details around
discontinuities at x=0.6 and x=0.85.

And it is also noted that the original central scheme with k(2)= 0.05, k(4)= 0.008 fails to
converge. Again the hybrid schemes are compared with the corresponding methods as
described in Subsection 4.2. Several observations can be obtained through the compari-
son. First, the hybrid schemes eliminate all types of oscillations effectively. Second, the
accuracy of smooth extrema and the resolution of shock and contact discontinuities are
well preserved and even improved after the hybridization. Third, the hybrid UP5 scheme
has achieved the most accurate simulation of smooth flow structures as well as the high-
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Figure 7: Density profiles of solutions to the blast-wave interaction obtained by the hybrid UP3 and WENO-
like without hybridization, left: global solution with close view on the extrema; right: local details around
discontinuities at x=0.6 and x=0.85.
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Figure 8: Density profiles of solutions to the blast-wave interaction obtained by the hybrid UP5 and WENO-
like without hybridization, left: global solution with close view on the extrema; right: local details around
discontinuities at x=0.6 and x=0.85.

est resolution around the discontinuities. And the hybrid central scheme also captures
the fine flow details including the shock at x=0.87 though the scheme shows a little more
dissipative on the contact discontinuities when compared with upwind schemes.

4.4 Double Mach reflection

An incident shock Ma= 10 past a 30◦ wedge, a well-known test case [23], is performed
on meshes with the edge length equal to 1/480. The density contour at t=0.2 is shown in
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Figure 9: Density profiles of solutions to the blast-wave interaction obtained by the third type of schemes

compared with the original central scheme with parameters k(2)=0.3, k(4)=0.03, left: global solution with close
view on the extrema; right: local details around discontinuities at x=0.6 and x=0.85.

Fig. 10 and the ”zoomed-in” figures around the double Mach stem obtained by different
schemes, are given in Figs. 11-13. All the figures are showing 30 equally spaced contour
lines from 2 to 22.

. Double Mach reflection problem: density contour, top: original superbee scheme; bottom: hybrid superbee
Figure 10: Double Mach reflection problem: density contour, top: original superbee scheme; bottom: hybrid
superbee scheme.
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Figure 11: Double Mach reflection problem obtained by the first type of schemes: zoom-in pictures around the
Mach stem left: original schemes; right: hybrid schemes; top: superbee schemes; bottom: WENO-like schemes.

Fig. 10 clearly displays the performance of original superbee method can be much im-
proved by hybridizing shock-capturing scheme. Not only have the oscillations around
the shocks but also the unphysical fluctuations at smooth flow zone been significantly
reduced by the hybrid scheme. As illustrated by Figs. 11-13, hybrid schemes are indeed
able to capture shock and small delicate structures of the blow-up region around the
double Mach stems fairly well. In Fig. 11 the hybridization even makes WENO scheme
capture more flow details. And this result is also consistent with our research conclu-
sion in [8], which is a carefully designed TVD scheme can show better resolution than a
fifth-order WENO scheme. In Fig. 12, we again observe the accuracy of UP3/UP5 is com-
parable/superior to current WENO-like scheme method. In Fig. 13, where the original
central scheme with k(2)= 0.05, k(4)= 0.008 diverges, the hybrid central scheme outper-
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Figure 12: Double Mach reflection problem obtained by the second type of schemes: zoom-in pictures around
the Mach stem left: hybrid UP3 scheme; right: hybrid UP5 scheme.
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Figure 13: Double Mach reflection problem obtained by the third type of schemes: zoom-in pictures around the

Mach stem left: original central scheme with k(2)=0.3, k(4)=0.03; right: hybrid central scheme.

forms the original one in both aspects of the shock-capturing and complex flows simu-
lation. In Fig. 14 we show some of the plots of hybrid schemes about the cells that fail
to fulfill detection criterion. One can see the identified cells are on the whole around the
shocks and it is also expected that for the first type of hybrid schemes fewer cells have
been identified because either the superbee or the current WENO-like scheme in itself
has possessed more capability of stabilizing the discontinuities when compared to linear
upwind reconstruction or central method with a low dissipation/dispersion.
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Fig. 14. Double Mach reflection problem: cells that fail to fulfill detection criterion are shown in red

Figure 14: Double Mach reflection problem: cells that fail to fulfill detection criterion are shown in red top: the
first type of scheme, hybrid WENO; middle: the second type of scheme, hybrid UP5; bottom: the third type of
scheme.

4.5 A Mach 3 wind tunnel with a step

The problem under consideration is a Mach 3 flow in a wind tunnel with a step. The tun-
nel is 1 length unit high and 3 length units long. The step is 0.2 length units high and is
located at 0.6 length units from the left-hand end of the tunnel. The boundary conditions
are that of a reflecting surface along the walls of the tunnel, and inflow/outflow bound-
ary conditions are applied at the inlet and exit. The numerical experiment is performed
on a grid consisting of two structured blocks with an element size of 1/320. Figs. 15-
17 show the density contours computed by three types of schemes at time t= 4 with 30
equally spaced contour lines from 0.32 to 6.15. And Fig. 18 gives some of the plots of
hybrid schemes about the cells that fail to fulfill detection criterion.

For the first type of schemes, again strongly oscillatory solutions are obtained by the
original superbee method while more smooth and appropriate results are achieved by
the hybrid method. At the meantime the current WENO-like method fails to converge
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Fig. 15. Density contours for the Mach 3 wind tunnel with a step problem obtained by the first type of schemes

Figure 15: Density contours for the Mach 3 wind tunnel with a step problem obtained by the first type of
schemes top: original superbee scheme; middle: hybrid superbee scheme; bottom: hybrid WENO scheme.

top: original superbee scheme; middle: hybrid superbee scheme; bottom: hybrid WENO scheme.

Fig. 16. Density contours for the Mach 3 wind tunnel with a step problem obtained by the second type of schemes

Figure 16: Density contours for the Mach 3 wind tunnel with a step problem obtained by the second type of
schemes top: hybrid UP3 scheme; bottom: hybrid UP5 scheme.
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Fig. 17. Density contours for the Mach 3 wind tunnel with a step problem obtained by the third type of schemes

Figure 17: Density contours for the Mach 3 wind tunnel with a step problem obtained by the third type of

schemes top: original method with k(2)=0.05, k(4)=0.008; middle: original method with k(2)=0.3, k(4)=0.03;
bottom: hybrid method.

for this case while the hybrid one achieves accurate numerical prediction, demonstrat-
ing the robustness enhancement due to the hybridization. For the second type of hy-
brid schemes, the UP3 and UP5 methods gain oscillation-free solutions, and compared
with current WENO-like scheme, they improve the resolution of the upper slip line from
the triple point, especially for the resolution of the physical instability and rollup of the
contact line. For the third type of schemes, the original method with the k(2) = 0.05,
k(4)=0.008, though it has not blown up the simulation, gives unacceptable results. And
for the original method with the k(2)=0.3, k(4)=0.03, the singularity of the corner leads to
an erroneous entropy layer as well as a spurious solution at the bottom wall. However, no
spurious results are observed for hybrid methods, and the accuracy for the upper slip line
and the resolution for various shock structures have also been improved. From Fig. 18 we
see the detection criterion detects the cells where the solutions are recomputed by more
robust characteristic-based MUSCL scheme. The identified cells are on the whole around
those strong discontinuities and again fewer cells have been identified by the first type
of hybrid schemes when compared to the second and third type of hybrid schemes.
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Fig. 18. A Mach 3 wind tunnel with a step problem: cells that fail to fulfill detection criterion are shown in red

Figure 18: A Mach 3 wind tunnel with a step problem: cells that fail to fulfill detection criterion are shown in
red top: the first type of scheme, hybrid WENO; middle: the second type of scheme, hybrid UP5; bottom: the
third type of scheme.

4.6 Transonic flow past a NACA0012 airfoil

We consider inviscid transonic flow past a NACA0012 airfoil configuration with Ma=0.8,
the angle of attack 1.25◦. The mesh used in the computation is shown in Fig. 19. An O-
type meshing strategy consists of 100 points along the upper and lower surfaces of the
airfoil and 45 points in the direction normal to the surface. This case has been selected to
test the designed schemes on block-structured body-fitted grids. Figs. 20-22 present the
computed pressure coefficient distributions obtained by the original and hybrid methods.
Again in the right figure of Fig. 20, the oscillation with the WENO-like scheme is believed
to be caused by the simplified implementation of current WENO method. As can be seen,
the hybrid schemes are indeed able to eliminate the spurious oscillations in the vicinity of
shocks, especially for the original central scheme with the set of parameters of k(2)=0.05,
k(4)=0.008. In Fig. 21, we can observe the accuracy of UP3/UP5 is comparable/superior
to current WENO-like method. And it seems that the hybrid UP5 scheme has the best
resolution for both the shocks on the upper and the lower surface.
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Figure 19: NACA0012 airfoil mesh zoom in.
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Figure 20: Pressure distributions for the transonic flow past a NACA0012 airfoil problem obtained by the first
type of schemes left: hybrid superbee compared with original method; right: current WENO-like with and
without hybridization.

4.7 3D explosion problem

To validate the hybrid schemes in three spatial dimensions, we solve an explosion prob-
lem [24] on the computational domain [1 : 1]×[1 : 1]×[1 : 1]. The initial condition consists
of two regions of constant but different values of gas parameters separated by a sphere
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Figure 21: Pressure distributions for the transonic flow past a NACA0012 airfoil problem obtained by the second
type of schemes left: hybrid UP3 compared with WENO-like without hybridization; right: hybrid UP5 compared
with WENO-like without hybridization.
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Figure 22: Pressure distributions for the transonic flow past a NACA0012 airfoil problem obtained by the third

type of schemes left: hybrid scheme compared with original method with k(2)= 0.3, k(4)= 0.03; right: hybrid

scheme compared with original method with k(2)=0.05, k(4)=0.008.

of radius 0.4:

(ρ,p)=

{

(1.0, 1.0), r≤0.4,

(0.125, 0.1), r>0.4,
u,v,w=0, r=

√

x2+y2+z2. (4.3)

The numerical solution is computed at the output time t=0.25 on a mesh of 400 cells
in each coordinate direction and the results of the hybrid and original schemes are com-
pared with a reference radial solution, which is obtained by solving the one-dimensional
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Figure 23: Density results to the 3D explosion problem obtained by the first type of schemes: left: superbee;
right: WENO-like.
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Figure 24: Internal energy results to the 3D explosion problem obtained by the first type of schemes: left:
superbee; right: WENO-like.

Euler equations with a geometric source term on a very fine mesh [24]. We present
distributions of gas density and internal energy in Figs. 23-28, where zoom-in pictures
around discontinuities or extrema are also provided. From Figs. 23-24 one can see the
over/undershoots about the discontinuity at x=0.6 have been suppressed by the hybrid
methods, meantime the accuracy on the extrema and the resolution on the shock and
contact discontinuity have not been compromised with reference to the original meth-
ods. One could also compare results of the superbee and current WENO-like schemes
and find that the 2nd-order scheme even has higher resolution on the extrema at x=0.1
and x=0.45 and higher resolution on the contact discontinuity at x=0.6. For the second
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Figure 25: Density results to the 3D explosion problem obtained by the second type of schemes: left: UP3;
right: UP5.
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Figure 26: Internal energy results to the 3D explosion problem obtained by the second type of schemes: left:
UP3; right: UP5.

type of hybrid schemes, the resolution of extrema and discontinuities are both improved
as the order of accuracy of the scheme increased. And compared with current WENO-
like without hybridization, less oscillation is obtained by the hybrid schemes. As for the
central schemes, it seems that the original methods are inclined to produce oscillatory
solutions before the discontinuity. The hybrid scheme has removed almost all the oscil-
lations and has achieved more accurate prediction for the smooth zone, see for example
the zoom-in results of [0.6,0.8] from Fig. 28. Note that zoom-in results of [0.6,0.8] are not
shown for the right figure in Fig. 28 since the oscillation is quite obvious for the original
method.
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Figure 27: Density results to the 3D explosion problem obtained by the third type of schemes: left: hybrid

schemes compared with original method with k(2)=0.3, k(4)=0.03; right: hybrid schemes compared with original

method with k(2)=0.05, k(4)=0.008.
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Figure 28: Internal energy results to the 3D explosion problem obtained by the third type of schemes: left:

hybrid schemes compared with original method with k(2)=0.3, k(4)=0.03; right: hybrid schemes compared with

original method with k(2)=0.05, k(4)=0.008.

4.8 Further discussion on the efficiency of hybrid schemes

In this subsection, the results of computational time comparison between the hybrid
schemes and original methods are shown in Table 1, where the CPU times of different
schemes have been normalized with original superbee scheme in each test case. One can
see that the hybrid schemes do increase the computational cost in comparison with their
corresponding methods and Table 1 shows that the first type of hybrid scheme requires
30%−40% CPU time more than the corresponding methods while for the third type of hy-
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Table 1: Comparison on the normalized CPU time of different schemes for double Mach reflection, a Mach 3
wind tunnel with a step and 3D explosion problem.

CPU time (normalized with original superbee scheme)

Cases original hybrid WENO-like without hybrid hybrid hybrid original hybrid

superbee superbee hybridization WENO UP3 UP5 central central

double Mach reflection 1.0 1.40 1.26 1.74 1.47 1.58 0.71 1.18

a Mach 3 wind tunnel with a step 1.0 1.42 — 1.76 1.48 1.59 0.72 1.20

3D explosion 1.0 1.36 1.27 1.71 1.44 1.54 0.71 1.16

brid scheme, the increase of computing cost is about 60%−70% compared with original
central scheme. On the other hand, it is also notable from the table that the hybrid central
scheme is more efficient than the WENO-like without hybridization. In fact due to small
computational cost of central scheme, the third type of hybrid scheme is the most efficient
one in all present hybrid schemes, which can make this scheme an efficient and favorable
hybrid strategy, especially for the problems containing both discontinuities and compli-
cated flow structures. However it should be noted that the increased computational cost
can vary with different cases. And it is hoped that the results provided here can be used
in choosing the ”optimal” scheme when one considers both the CPU time and the quality
of the results.

5 Conclusion

In this paper, a general framework for designing various types of hybrid schemes is es-
tablished based on the concept of MOOD method. The idea is to take advantage of the
MOOD and turn the construction of hybrid schemes into the construction of different
numerical flux for the interface of the cells. The methodology utilizes low dissipation
or dispersion but less robust schemes to update the solution and then implements ro-
bust and high resolution schemes to deal with problematic situations. Three types of
hybrid schemes, built upon MUSCL/WENO reconstruction, linear reconstruction and
central scheme respectively, have been developed in the present framework. And a
characteristic-based MUSCL scheme is employed as the shock-capturing method. Clas-
sical test cases for solving the Euler system are performed to examine the accuracy, the
resolution and non-oscillatory property of the designed hybrid schemes. The numerical
experiments demonstrate that the hybrid schemes eliminate all types of oscillations ef-
fectively while maintaining or improving the resolution for both the discontinuous and
smooth flow features. We also show the performance of original methods can be signif-
icantly improved due to the proposed hybridization and some results by the 2nd-order
and 3rd-order schemes are even comparable to those obtained by current WENO-like
scheme.

Further work will be carried out including the extension of current hybrid schemes
to achieve more desirable mathematical properties such as DMP property and/or
positivity-preserving property. A possible way to preserve the positivity is to use the self-
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adjusting positivity preserving scheme [25] instead of the current characteristic MUSCL
in the present framework. Another possible way to ensure positivity-preserving or DMP
property would be to add more loop with a more dissipative TVD scheme or even a first
order Godunov-type scheme being used for the cells that fail to provide an acceptable
solution according to the MOOD detection criteria after applying characteristic-based
MUSCL scheme [18].
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