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Abstract. In this paper we develop conservative finite-difference schemes (FDS) for
the process of femtosecond pulse interaction with semiconductor. This process is de-
scribed by the set of 2D dimensionless differential equations concerning concentra-
tions of both free electrons and ionized donors, and potential of electric field, induced
by laser pulse and laser beam intensity changing. The electron mobility, electron diffu-
sion, nonlinear dependence of absorption coefficient on semiconductor characteristics
are taken into account also.

For the problem under consideration we have constructed and compared two con-
servative FDS. One of them is based on the well known split-step method, the second
one is based on the original two-stage iteration process. We paid the special attention
to the 2D Poisson equation solution. This equation is solved by using an additional
iteration process. Thus, to solve the problem under consideration it is necessary to
achieve a convergence of two iteration processes.

As follows from computer simulation provided by us, the criterion choice for the
iteration process convergence can significantly affect on the equations solution accu-
racy. We used the criterion based on assessment of an absolute and relative error of the
solution obtained on iterations. This criterion is also used for Poisson equation solv-
ing. However, the iteration convergence criterion, based on discrepancy estimating, is
more effective for using in this case.

Computer simulation results showed that the developed conservative FDS on the
base of two-stage iteration process is an effective tool for investigation of complicated
modes of semiconductor characteristics changing.
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1 Introduction

Investigation of a laser radiation interaction with semiconductor is very modern problem
because semiconductors are widely used in many applications such as optoelectronics
devices (see, for example [1-22]). Among them we would stress an optically bistable ele-
ment, based on using various nonlinear responses of semiconductor, exposed by a laser
radiation. As it is well-known, the optical bistability (OB) is very promising phenomenon
for the creation and developing of all-optical data processing. This phenomenon charac-
terizes by existence of a hysteresis loop for semiconductor characteristics. This results
in two stable states appearing: upper and low states for the same value of the incident
optical pulse intensity. Realization of one of them depends on initial conditions for the
problem. Thus, the problem has not the unique steady state solution if an OB occurs.
Moreover, under certain conditions, the problem solution can become unstable and com-
plicated oscillating regimes of semiconductor characteristics changing develop.

OB phenomenon accompanies also by many various nonlinear effects occurring in
semiconductor. So, we face to necessity of computing very complicated regimes. For
example, developing of the helical wave for electron-hole plasma was demonstrated in
[23-24] if a semiconductor is placed in the external electric field. For computer simulation
of these complicated nonlinear non-stationary processes it is necessary to use especially
developed finite-difference schemes (FDS) which possessing such properties as conser-
vatism, stability to initial condition perturbation and stability to round-off errors. Of
course, at developing the FDS, the main question is the difference solution proximity to
the solution of the differential problem. However, if we provide a computer simulation
during long-time interval in comparison with characteristic times of processes under in-
vestigation, we have to take into account accumulation of rounding errors at computer
simulation. If the FDS possesses property of stability to rounding errors accumulation,
then this FDS possesses the property of asymptotic stability [25]. Construction of such
FDS is an urgent problem. For example, in [26] there is at least one sample of using FDS
which doesn’t provide asymptotic stability property. To avoid this influence one has to
use extraordinary small grid steps.

One of the well-known approaches for computer simulation of multi-dimensional
equations is the split-step method using [27-32]. However, in [33] we had shown that
this method possesses some disadvantages for the problem under consideration and it
is stimulated us to develop a new FDS for computer simulation of this problem. In the
present paper we continue our research in this direction. Below we paid our main atten-
tion to solving the Poisson equation with respect to the electric field potential. The aim
is a choice of an iteration process termination criterion for high computation accuracy
achievement at long time interval (about 1000 dimensionless units). For this purpose we
have to develop a FDS, which possess the asymptotic stability property.
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2 Statement of 2D problem

The process under consideration is described by the following set of 2D dimensionless
differential equations [34-36]:

∂2 ϕ

∂x2
+

∂2 ϕ

∂y2
=γ(n−N), 0< x< Lx, 0<y< Ly, t>0, (2.1)

∂n

∂t
=Dx

∂

∂x

(

∂n

∂x
−µxn

∂ϕ

∂x

)

+Dy
∂

∂y

(

∂n

∂y
−µyn

∂ϕ

∂y

)

+G(N,n)−R(N,n), (2.2)

∂N

∂t
=G(N,n)−R(N,n),

∂I

∂y
+δoδ(N,n)I=0. (2.3)

Above the following notations are introduced. Function n denotes a free electron con-
centration in the conductivity zone of a semiconductor; N is a concentration of ionized
donors. Function ϕ describes a dimensionless electric field potential. I is the intensity of
laser radiation propagating along the y axis. The coordinate x is a coordinate that is trans-
verse to the laser pulse propagation direction. Variables x, y are dimensionless spatial
coordinates and Lx, Ly denote their maximal values, correspondingly. Variable t denotes
dimensionless time, its maximal value is equal to Lt. Coefficients of electron diffusion
Dx, Dy and coefficients of electron mobility µx, µy are non-negative constants. Param-
eter γ depends, in particular, on the maximal achieving concentration of free charged
particles, δ0 denotes a maximal semiconductor absorption coefficient of laser energy.

Light energy absorption coefficient δ(N,n) can be approximated by different ways in
dependence of physical experiment conditions. Below we consider its following approx-
imation

δ(N,n)=(1−N)e−ψ(1−ξn), ψ,ξ>0, (2.4)

which is close to one of the experimental dependencies [34] corresponding to the con-
centration OB existence. This dependence takes into account the Burstein-Moss effect:
dynamic saturation of the excited energy levels in the conduction band and depletion of
donor levels. The functions G and R, describing generation and recombination of free
charged particles in the semiconductor, are given by the formulas

G(N,n)=q0 Iδ(N,n), R(N,n)=
nN−n2

0

τp
, (2.5)

where n0 is an equilibrium value of the free electron concentration and ionized donor
concentration, τp characterizes a recombination time of free electron. q0 is a maximal
intensity of the incident laser pulse, its profile is Gaussian one along the x-coordinate

I|y=0=exp

(

−

(

x−0.5Lx

0.1Lx

)2
)

(1−exp(−10t)). (2.6)



V. A. Trofimov et al. / Commun. Comput. Phys., 23 (2018), pp. 1512-1533 1515

Boundary conditions (BC) for the set of equations (2.1) are written below if an electric
current is absent through the semiconductor faces and if a semiconductor is placed in the
external electric field:

(

∂n

∂x
−µxn

∂ϕ

∂x

)
∣

∣

∣

∣

x=0,Lx

=

(

∂n

∂y
−µyn

∂ϕ

∂y

)
∣

∣

∣

∣

y=0,Ly

=0, (2.7)

∂ϕ

∂x

∣

∣

∣

∣

x=0,Lx

=−Ex,
∂ϕ

∂y

∣

∣

∣

∣

y=0,Ly

=−Ey.

But it should be stressed, that in the present paper we provide computer simulation with
Ex =Ey =0. In this case, the problem solution is symmetrical concerning the laser beam
centre. So, it is important feature for an accuracy estimating for the FDS.

Initial conditions for the charged particle concentrations depend on the BC for the
set of equations. If an external electric field is non-zero we have to solve an additional
stationary problem for initial distribution of the semiconductor characteristics. If the
external electric field is absent then the initial conditions are written in the following
manner:

n|t=0= N|t=0=n0, ϕ|t=0=0, I|t=0=0. (2.8)

For the problem (2.1)-(2.8) the law of charge conservation takes place:

Q(t)=

Ly
∫

0

Lx
∫

0

(n(x,y,t)−N(x,y,t))dxdy=0. (2.9)

Difference analogue of this invariant has to be valid for the difference problem. We follow
this invariant for the FDS construction. If the difference analogue for the invariant (2.7)
conserves, then our FDS is a conservative one. This property shouldn’t be loosen due to
the accumulation of a computing error even for computation on long time interval. So,
our aim is to construct the conservative FDS with the asymptotic stability property.

3 Finite-difference schemes

To solve the problem (2.1)-(2.8) we have constructed a FDS. Below we describe it briefly.
With this aim let us introduce in the domain

Ḡ={0≤ x≤ Lx}×
{

0≤y≤ Ly

}

×{0≤ t≤ Lt},

the uniform grids in time and space

Ω=ωx×ωy×ωt, Ω′=ωx×ωy×ω′
t, Ω”=ωx×ω′

y×ω′
t,

ωx=
{

xi = ihx ,i=0,Nx,hx = Lx/Nx

}

, ωy=
{

yj = jhy, j=0,Ny,hy = Ly

/

Ny

}

,
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ω′
y=
{

y′j =(j−0.5)hy , j=0,Ny+1,hy = Ly

/

Ny

}

, ωt=
{

tk = kτ,k=0,Nt ,τ= Lt/Nt

}

,

ω′
t=
{

t′k =(k+0.5)τ,k=0,Nt−1,τ= Lt/Nt

}

.

Let’s define grid functions nh, Nh, ϕh on Ω by the following way:

nijk =n
(

xi,yj,tk

)

, Nijk =N
(

xi,yj,tk

)

, ϕijk = ϕ
(

xi,yj,tk

)

.

Functions n̄h, N̄h, ϕ̄h are defined on the grid Ω′ shifted on time:

n̄ijk =n
(

xi,yj,t
′
k

)

, N̄ijk =N
(

xi,yj,t
′
k

)

, ϕ̄ijk = ϕ
(

xi,yj,t
′
k

)

.

Function Ih is defined on the grid Ω′′ shifted additionally on spatial coordinate y: Iijk =

I
(

xi,y
′
j,t

′
k

)

.

For brevity, below we used the following index-free notations:

f = fi = fijk , fi±1= fi±1jk , f j±1= fij±1k,

fi±0.5=0.5
(

fijk+ fi±1jk

)

, f j±0.5=0.5
(

fijk+ fij±1k

)

, f̂ = f̂i = fijk+1,

0.5

f =
0.5

f i=0.5
(

fi+ f̂i

)

=0.5
(

f + f̂
)

,

where f is one of the grid functions nh, Nh, ϕh.

Ii= Iijk, Ii±1= Ii±1jk, Îi = Iij+1k,
0.5
I i=0.5

(

Ii+ Îi

)

.

For the FDS construction we also use the following notations:

R=
(

nN−n2
0

)

/τp, R̂=
(

n̂N̂−n2
0

)

/τp,
0.5
R=0.5(R+ R̂), R̄=

(

n̄N̄−n2
0

)

/τp,

G=q0

0.5
I δ, Ĝ=q0

0.5
I δ̂,

0.5
G=0.5(G+Ĝ), Ḡ=q0

0.5
I δ̄,

δ=(1−N)exp(−ψ(1−ξn)) , δ̂=
(

1−N̂
)

exp(−ψ(1−ξn̂)),

δ̄=(1−N̄)exp(−ψ(1−ξn̄)) ,
0.5
δ =0.5(δ+ δ̂).

The first and the second differential derivatives are defined in standard way and notated
as follows: fx, fx̄, fx̄x, fy, fȳ, fȳy, ft. We use also the following notation for BC writing:

fx,ij=
fi+1j− fij

hx
, fx̄,ij=

fij− fi−1j

hx
, fy,ij =

fij+1− fij

hy
, fȳ,ij=

fij− fij−1

hy
.

Laplace difference operator is stated in the standard way: Λ f = fx̄x+ fȳy. For brevity, we
introduce another finite-difference operators:

Lx̄x(n)ϕ=
µx

hx
(ni+0.5ϕx−ni−0.5ϕx̄),

Lȳy(n)ϕ=
µy

hy

(

nj+0.5ϕy−nj−0.5ϕȳ

)

.
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Let’s notice that the FDS conservatism means a validity of a difference analogue for
the conservation law. At the integral (2.9) computation we use trapezoid rule, which
possesses the second order of accuracy

Q(tk)=
Nx

∑
i=0

Ny

∑
j=0

cijhxhy

(

nijk−Nijk

)

, (3.1)

cij =























1/4, i=0, j=0; i=0, j=Ny ; i=Nx, j=0; i=Nx, j=Ny;

1/2, i=0, j=1,Ny−1; i=Nx, j=1,Ny−1;

1/2, i=1,Nx−1, j=0; i=1,Nx−1, j=Ny;

1, i=1,Nx−1, j=1,Ny−1.

We follow this invariant validity because it is an important characteristic of a FDS
efficiency. For the problem under consideration the asymptotic stability property viola-
tion can be caused by conservatism property violation (invariant (3.1) value increases in
time) or in the obtained solution symmetry violation. It should be stressed that the corre-
sponding conservative FDS for 1D problem was developed in [33]. Let us notice that in
our computer simulation we compute the invariant (3.1) in inner grid nodes because of
an optical radiation presence at two boundaries of the domain.

For numerical solution of the problem (2.1)-(2.8) we approximate the initial-boundary
problem by the set of nonlinear finite-difference equations. For their resolvability the
various iteration processes are used.

3.1 Finite-difference scheme on the base of split-step method (FDS 1.1)

As it is well known, the split-step method is widely used for solution of such problems.
Therefore, we firstly apply this method for computer simulation. But this method has
some significant disadvantages as it will be shown below. Nevertheless, to stress advan-
tages of a conservative FDS, we will compare the computer simulation results obtained
on these methods.

Using the standard version of this method we write below the following finite-
difference FDS 1.1

n̄−n

0.5τ
=Dx(n̄x̄x−Lx̄x(n)ϕ)+Dy

(

nȳy−Lȳy(n)ϕ
)

+G−R, (3.2)

Λϕ̄=γ(n̄−N̄), i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

N̄−N

0.5τ
=G−R, i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

with corresponding BC and initial conditions:

ϕ̄x,0j= ϕ̄x̄,Nx j =0, n̄x,0j= n̄x̄,Nx j =0, j=0,··· ,Ny, (3.3)

ϕ̄y,i0= ϕ̄ȳ,iNy
=0, n̄y,i0= n̄ȳ,iNy

=0, i=0,··· ,Nx,

nij0=Nij0=n0, ϕij0=0, I ij0.5=0, i=0,··· ,Nx, j=0,··· ,Ny,
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and

n̂−n̄

0.5τ
=Dx(n̄x̄x−Lx̄x(n̄)ϕ)+Dy

(

n̂ȳy−Lȳy(n̄)ϕ
)

+Ḡ− R̄, (3.4)

Λϕ̂=γ
(

n̂−N̂
)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

N̂−N̄

0.5τ
= Ḡ− R̄, i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

Î− I

hy
+δ0

0.5
δ

0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0,

with corresponding BC and initial conditions:

ϕ̂x,0j= ϕ̂x̄,Nx j=0, n̂x,0j= n̂x̄,Nx j=0, j=0,··· ,Ny, (3.5)

ϕ̂y,i0= ϕ̂ȳ,iNy
=0, n̂y,i0= n̂ȳ,iNy

=0, i=0,··· ,Nx,

Ii0k =exp

(

−

(

xi−0.5Lx

0.1Lx

)2
)

(1−exp(−10tk)), k=0,··· ,Nt, i=0,··· ,Nx.

Using the standard differential derivatives expansion in a Taylor series, it is easy to
proof

Theorem 3.1. FDS 1.1 (3.2),(3.4) possesses the second order of approximation on spatial coor-
dinates and on time coordinate in inner grid nodes concerning the point

(

xi,yj,t
′
k

)

on sufficient
smooth solution of the problem (2.1)-(2.8). BC (3.3), (3.5) possess the first order of approxima-
tion.

For brevity we omit the proof of the Theorem 3.1.
The BC (3.3), (3.5) are approximated with the first order on spatial coordinates to

achieve the FDS conservatism property validity. Necessity of such BC approximation
was considered in [33] for 1D case, and could be easily generalized for 2D case.

Theorem 3.2. FDS 1.1 is a conservative one if the BC are approximated with the first order on
spatial coordinates.

Proof. We can write down the following sum from the equations concerning free electron
and ionized donor concentrations:

Nx−1

∑
i=1

Ny−1

∑
j=1

(nt−Nt)

=
Nx−1

∑
i=1

Ny−1

∑
j=1

(Dxn̄x̄x−0.5DxLx̄x(n)ϕ−0.5DxLx̄x(n̂)ϕ̂)

+
Nx−1

∑
i=1

Ny−1

∑
j=1

(

Dy
0.5
n ȳy−0.5DyLȳy(n)ϕ−0.5DyLȳy(n̂)ϕ̂

)

. (3.6)
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Let’s calculate the sums entering the right part of equality (3.6):

Nx−1

∑
i=1

n̄x̄x =
1

h2
x

Nx−1

∑
i=1

(n̄i−1−2n̄+n̄i+1)=
1

hx

(

n̄x̄,Nx j−n̄x,0j

)

,

Nx−1

∑
i=1

Lx̄x(n̂)ϕ̂=µx

Nx−1

∑
i=1

(

n̂i+0.5
ϕ̂i+1− ϕ̂i

h2
x

−n̂i−0.5
ϕ̂i− ϕ̂i−1

h2
x

)

=−µxn̂0.5j

ϕ̂1j− ϕ̂0j

h2
x

+µxn̂Nx−0.5j

ϕ̂Nx j− ϕ̂Nx−1j

h2
x

.

Other sums are calculated in the same way. Thus we receive:

Nx−1

∑
i=1

Ny−1

∑
j=1

(nt−Nt)

=
Dx

hx

Ny−1

∑
j=1

(

n̄x̄,Nx j−n̄x,0j

)

+
Dy

hy

Nx−1

∑
i=1

(

nȳ,iNy+n̄ȳ,iNy−ny,i0−n̄y,i0

)

+
Dxµx

2hx

Ny−1

∑
j=1

(

n0.5j ϕx,0j+n̂0.5j ϕ̂x,0j−nNx−0.5j ϕx̄,Nx j+n̂Nx−0.5j ϕ̂x̄,Nx j

)

+
Dyµy

2hy

Nx−1

∑
i=1

(

ni0.5ϕy,i0+n̂i0.5 ϕ̂y,i0−niNy−0.5ϕȳ,iNy
+n̂iNy−0.5 ϕ̂ȳ,iNy

)

. (3.7)

At BC approximation with the first order as we do in (3.3), (3.5), then right part of
(3.7) is equal to zero. Thus FDS 1.1 is a conservative one.

However, at carrying out the computer simulation we have found, that this FDS isn’t
applicable for the problem solution during long time interval: it does not possess the
asymptotic stability property and, as a consequence, the invariant (3.1) value does not
conserve (see Fig. 1, dash line). Therefore, we modified this method and added an iter-
ation process for FDS resolution (see below). Therefore, for our investigations we prefer
to use modified finite-difference FDS 1.2.

3.2 Modified finite-difference scheme on the base of split-step method
(FDS 1.2)

The modified FDS on the base of split-step method is write in following manner:

n̄−n

0.5τ
=Dx(n̄x̄x−Lx̄x(n)ϕ)+Dy

(

nȳy−Lȳy(n)ϕ
)

+G−R, (3.8)

n̂−n̄

0.5τ
=Dx(n̄x̄x−Lx̄x(n̂)ϕ̂)+Dy

(

n̂ȳy−Lȳy(n̂)ϕ̂
)

+Ĝ− R̂,
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Λϕ̂=γ
(

n̂−N̂
)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

N̂−N

τ
=

0.5
G−

0.5
R , i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

Î− I

hy
+δ0

0.5
δ

0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0.

BC and initial conditions are defined in (3.3), (3.5). It is easy to see a validity of two
theorems formulated below.

Theorem 3.3. FDS 1.2 (3.8) possesses the second order of approximation on spatial coordinates
and on time coordinate in inner grid nodes concerning the point

(

xi,yj,t
′
k

)

on sufficient smooth
solution of the problem (2.1)-(2.6). BC (3.3), (3.5) possess the first order of approximation.

Theorem 3.4. FDS 1.2 is a conservative one if the BC are approximated with the first order on
spatial coordinates.

We omit a proof of the Theorem 3.4, as it is similar to the proof of the Theorem 3.2.

Because the FDS (3.8) is nonlinear one, the following iteration process for solving the
equation concerning a free electron concentration on the upper time layer is used. At the
first step we calculate the function n̄ on additional semi-layer of time. Then we carry out
calculation of the functions on the upper time layer. To do this we have to compute a
donor concentration, and free electron concentration, and the electric field potential, as
well as the beam intensity on each of iteration. Thus, we use an iteration process:

n̄−n

0.5τ
=Dx (n̄x̄x−Lx̄x(n)ϕ)+Dy

(

nȳy−Lȳy(n)ϕ
)

+G−R, (3.9)

s+1
n̂ −n̄

0.5τ
=Dx

(

n̄x̄x−Lx̄x(
s
n̂)

s
ϕ̂

)

+Dy

(

s+1
n̂ ȳy−Lȳy(

s
n̂)

s
ϕ̂

)

+
s

Ĝ−
s

R̂,

Λ
s+1
ϕ̂ =γ

(

s+1
n̂ −

s+1

N̂

)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

s+1

N̂ −N

τ
=

s
0.5
G −

s
0.5
R , i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

s+1

Î −I

hy
+δ0

s+1
0.5
δ

0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0.
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For finite-difference equations (3.9) the BC are written in the form:

s+1
ϕ̂ x,0j=

s+1
ϕ̂ x̄,Nx j=0, n̄x,0j= n̄x̄,Nx j =0, j=0,··· ,Ny, (3.10)

s+1
ϕ̂ y,i0=

s+1
ϕ̂ ȳ,iNy

=0,
s+1
n̂ y,i0=

s+1
n̂ ȳ,iNy

=0, i=0,··· ,Nx,

Ii0k =exp

(

−

(

xi−0.5Lx

0.1Lx

)2
)

(1−exp(−10tk)), k=0,··· ,Nt, i=0,··· ,Nx.

As an initial approach of the functions for the iterative process, their values, calcu-
lated on a previous time layer, are undertaken:

s=0
n̂ =n,

s=0

N̂ =N,
s=0
ϕ̂ = ϕ,

s=0

Î = I. (3.11)

Criterion of the iteration process convergence is given by the following expressions:
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∣

∣
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∣
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∣
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N̂
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+ε2, (3.12)
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∣

∣

∣

s
ϕ̂

∣

∣

∣

∣

+ε2,

∣

∣

∣

∣

∣

s+1

Î −
s

Î

∣

∣

∣

∣

∣

≤ ε1

∣

∣

∣

∣

s

Î

∣

∣

∣

∣

+ε2, ε1,ε2>0, i=0,··· ,Nx, j=0,··· ,Ny.

We supposed, that we found out the problem solution on the upper time layer if the
inequalities (3.12) are satisfied for all functions and for all grid nodes simultaneously.

For the practice it is very important that the following theorem is valid.

Theorem 3.5. FDS 1.2 is a conservative one on each of iterations if BC are approximated with
the first order on spatial coordinates.

However, computer experiments have shown, that FDS 1.2 doesn’t provide asymp-
totic stability property under certain conditions (see below the computer results). This
is caused by two factors. The first one is an iteration process using to solve the result-
ing difference equations. The second one is a consequence of a electric current flow on
x-coordinate in Eq. (3.8): we use a free electron concentration at different time layers.
Regard to this, in the present paper we constructed another conservative FDS.

3.3 Symmetrical finite-difference scheme (FDS 2)

Below on the base of Crank-Nicolson method we develop another FDS – it is a symmetric
one and it looks in following manner:

n̂−n

τ
=Dx

0.5
n x̄x+Dy

0.5
n ȳy+

0.5
G −

0.5
R

−
Dx

2
(Lx̄x(n̂)ϕ̂+Lx̄x(n)ϕ)−

Dy

2

(

Lȳy(n̂)ϕ̂+Lȳy(n)ϕ
)

, (3.13)



1522 V. A. Trofimov et al. / Commun. Comput. Phys., 23 (2018), pp. 1512-1533

Λϕ̂=γ
(

n̂−N̂
)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

N̂−N

τ
=

0.5
G−

0.5
R , i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

Î− I

hy
+δ0

0.5
δ

0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0,

with corresponding BC and initial conditions

ϕ̂x,0j= ϕ̂x̄,Nx j=0, n̂x,0j= n̂x̄,Nx j=0, j=0,··· ,Ny, (3.14)

ϕ̂y,i0= ϕ̂ȳ,iNy
=0, n̂y,i0= n̂ȳ,iNy

=0, i=0,··· ,Nx,

Ii0k =exp

(

−

(

xi−0.5Lx

0.1Lx

)2
)

(1−exp(−10tk)), k=0,··· ,Nt, i=0,··· ,Nx,

nij0=Nij0 =n0, ϕij0=0, I ij0.5=0, i=0,··· ,Nx, j=0,··· ,Ny.

Theorem 3.6. FDS 2 (3.13) possesses the second order of approximation on spatial coordinates
and on time coordinate in inner grid nodes concerning the point

(

xi,yj,t
′
k

)

on sufficient smooth
solution of the problem (2.1)-(2.8). BC (3.14) possess the first order of approximation.

Theorem 3.7. FDS 2 is a conservative one if BC are approximated with the first order on spatial
coordinates.

We omit a proof of the Theorem 3.7, as it is similar to the proof of the Theorem 3.2.

We solve the obtained set of nonlinear difference equations by means of the original
two-stage iteration process. Below the first stage of the iteration process with the corre-
spondingly BC is written:

s+1
n̂ −n

τ
=Dx

s+1
0.5
n̂ x̄x +Dy

s
0.5
n̂ ȳy+

s
0.5
G −

s
0.5
R

−
Dx

2

(

Lx̄x

s

(n̂)
s
ϕ̂+Lx̄x(n)ϕ

)

−
Dy

2

(

Lȳy(
s
n̂)

s
ϕ̂+Lȳy(n)ϕ

)

, (3.15)

Λ
s+1
ϕ̂ =γ

(

s+1
n̂ −

s+1

N̂

)

,i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

s+1

N̂ −N

τ
=

s
0.5
G −

s
0.5
R , i=0,··· ,Nx, j=0,··· ,Ny, k≥0,

s+1

Î −I

hy
+δ0

s+1
0.5
δ

s+1
0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0.
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BC and initial conditions for Eq. (3.13) on iterations are the following

s+1
ϕ̂ x,0j=

s+1
ϕ̂ x̄,Nx j=0,

s+1
n̂ x,0j=

s+1
n x̄,Nx j=0, j=0,··· ,Ny, (3.16)

s+1
ϕ̂ y,i0=

s+1
ϕ̂ ȳ,iNy

=0, i=0,··· ,Nx,

Ii0k =exp

(

−

(

xi−0.5Lx

0.1Lx

)2
)

(1−exp(−10tk)), k=0,··· ,Nt, i=0,··· ,Nx.

The second stage is:

s+2
n̂ −n

τ
=Dx

s+1
0.5
n̂ x̄x +Dy

s+2
0.5
n̂ ȳy+

s+1
0.5
G −

s+1
0.5
R

−
Dx

2

(

Lx̄x

s+1

(n̂)
s+1
ϕ̂ +Lx̄x(n)ϕ

)

−
Dy

2

(

Lȳy(
s+1
n̂ )

s+1
ϕ̂ +Lȳy(n)ϕ

)

, (3.17)

Λ
s+2
ϕ̂ =γ

(

s+2
n̂ −

s+2

N̂

)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1, k≥0,

s+2

N̂ −N

τ
=

s+1
0.5
G −

s+1
0.5
R , i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0,

s+2

Î −I

hy
+δ0

s+2
0.5
δ

s+2
0.5
I =0, i=0,··· ,Nx, j=1,··· ,Ny−1, k≥0,

with corresponding BC and initial conditions on the (s+2) iteration

s+2
ϕ̂ x,0j=

s+2
ϕ̂ x̄,Nx j=0, j=0,··· ,Ny, (3.18)

s+2
ϕ̂ y,i0=

s+2
ϕ̂ ȳ,iNy

=0,
s+2
n̂ y,i0=

s+2
n ȳ,iNy

=0, i=0,··· ,Nx,

Ii0k =exp

(

−

(

xi−0.5Lx

0.1Lx

)2
)

(1−exp(−10tk)),k=1,··· ,Nt, i=0,··· ,Nx.

It is very important to pay attention that for the finite-difference FDS 2 we check the
criterion of iteration convergence only after we make both iteration stages:

∣

∣

∣

∣

s+2
n̂ −

s
n̂

∣

∣

∣

∣

≤ ε1

∣

∣

∣

∣

s
n̂

∣

∣

∣

∣

+ε2,

∣

∣

∣

∣

∣

s+2

N̂ −
s

N̂

∣

∣

∣

∣

∣

≤ ε1

∣

∣

∣

∣

s

N̂

∣

∣

∣

∣

+ε2,

∣

∣

∣

∣

s+2
ϕ̂ −

s
ϕ̂

∣

∣

∣

∣

≤ ε1

∣

∣

∣

∣

s
ϕ̂

∣

∣

∣

∣

+ε2, (3.19)

∣

∣

∣

∣

∣

s+2
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If these inequalities are not valid for any functions and for any grid points simultane-
ously, then we repeat our calculations. As the initial approach for iteration process the
equalities (3.11) are used.

As one can see, the main difference between the finite-difference FDS 1.2 and the
finite-difference FDS 2 consists in approach for solution of the nonlinear equation con-
cerning the free electron concentration. At the finite-difference FDS 1.2 construction we
have based on the summary approximation principle. On the contrary, for FDS 2 we use
the iteration process and don’t use the additional semi-layer on time axis. The following
theorem takes place.

Theorem 3.8. FDS 2 is a conservative one on each of iterations if BC are approximated with the
first order on spatial coordinates.

Let us note, that the FDS 2 conservatism on each iteration is very important property
for the asymptotic stability validity.

3.4 Additional iteration process for the Poison equation

One more complexity, appearing at solving the problem (2.1)-(2.8), is caused by the solu-
tion of the 2D Poisson equation

∂2 ϕ

∂x2
+

∂2 ϕ

∂y2
=γ(n−N), 0< x< Lx, 0<y< Ly. (3.20)

Obviously, if this equation has zero-value BC, then for its solution one can apply the
method of Fast Fourier Transform. However, in more general case this method cannot
be used. In connection with this we arrange another iteration process for the Poisson
equation solving. Moreover, our computer simulation showed, that an accuracy of the
Poisson equation solution, which can be estimated also by using the discrepancy

Ψ(ϕ)=Λϕ−γ(n−N), i=1,··· ,Nx−1, j=1,··· ,Ny−1, (3.21)

influences significantly on the problem (2.1)-(2.8) solution. The main question is: what
criterion of the iteration process stopping is necessary to apply for the iteration process
convergence estimation? To solve Eq. (3.20) with arbitrary BC we have to arrange addi-
tional iteration process in a such way, that we have to solve only the 1D problem. Taking
into account a linearity of Eq. (3.20) we use the split-step method in this case. For this pur-
pose we introduce an additional auxiliary grid function F on the spatial grid Ω̄=ωx×ωy,
which is governed by the problem:

F0=
s
ϕ̂,

Fp+1−Fp

τ̄
=F

p+1
x̄x +F

p
ȳy−γ

(

s+1
n̂ −

s+1

N̂

)

, (3.22)

Fp+2−Fp+1

τ̄
=F

p+1
x̄x +F

p+2
ȳy −γ

(

s+1
n̂ −

s+1

N̂

)

, i=1,··· ,Nx−1, j=1,··· ,Ny−1.

Fx,0j=Fx̄,Nx j=0, Fy,i0=Fȳ,iNy
=0.
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Here p= 0,1,2,··· is the number of iteration, parameter τ̄ is the iteration step, which is
not equal to time grid step τ. The functions n and N are taken on the upper layer in
time coordinate (here for brevity we consider only the additional iteration process for
the first stage (3.15) of iteration process for the finite-difference FDS 2, as for the second
stage (3.17) this additional process constructed in the same way). For solving obtained
difference equation we use Thomas algorithm on each iteration of the process (3.22). The
convergence estimation of this additional iteration process is based on one of the follow-
ing criterion:
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∣

∣

∣
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F −
p

F

∣

∣

∣

∣

≤ ε3 |F
p|+ε4, ε3,ε4>0, i=1,··· ,Nx−1, j=1,··· ,Ny−1, (3.23)

which is similar to (3.12) or the criterion of the discrepancy (3.21) assessment:

∣

∣

∣

∣

∣

F
p+1
x̄x +F

p+2
ȳy −γ

(

s+1
n̂ −

s+1

N̂

)∣

∣

∣

∣

∣

≤ ε5, ε5>0, i=1,··· ,Nx−1, j=1,··· ,Ny−1. (3.24)

If the solution, obtained on the p+2 iteration, satisfies to the chosen criterion, then it is
the Poisson equation solution for s+1 iteration with respect to the concentration of free

electrons and ionized donors:
s+1
ϕ̂ =Fp+2.

4 Computer simulation results

We estimate the efficiency of various FDS, used for the problem (2.1)-(2.8) solution, by
the following criteria: accuracy of the invariant (3.1) conservation, symmetry of obtained
solution in the case of corresponding initial conditions. We also compare the obtained
results to the previous results obtained for the problem under consideration in 1D case.
Opportunity of using the large grid step on time coordinate without the solution accuracy
loosing is an important advantage of the FDS, obviously, because it is very actual question
for multidimensional non-stationary problems modelling. Below we discuss computer
simulation results for the following set of the parameters:

δ0=2, q0=1.5, Dx =Dy=10−5, γ=103, n0=0.01, µx =1, µy=1, (4.1)

ψ=2.553, ξ=3, τp=1, Lx= Ly=1.

The grid steps for spatial coordinates are equal to hx = hy = 0.01. We use the criterion
(3.23) for the iteration process convergence at the Poisson equation solving.

From Fig. 1 it follows that the FDS 1.1 is not a conservative one: value of invariant
(3.1) increases fastly in time. So, it should be stressed, that this FDS doesn’t provide va-
lidity of the physical conservation law. As for the FDS 1.2 and the FDS 2 we see that the
invariant (3.1) conserves with high accuracy. Nevertheless, one can see small increasing
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Figure 1: Time evolution of the invariant Q(t) calculated with grid steps and iteration process parameters

τ= 5·10−4, τ̄= 10−4, ε1 = 10−5, ε2 = 10−7, ε3 = 10−5, ε4 = 10−7 using the FDS 1.1 (dash line), the FDS 1.2
(solid line) and the FDS 2 (dot line).

of its value with time growing. This is a consequence of iteration process presence. Ob-
viously, the solution is obtained with certain accuracy because of occurring of iteration
process.

As it is follows from the formula (2.6), the Gaussian profile is chosen for the incident
pulse and it is symmetric relatively to the centre of x-axis. Respectively, the problem
solution should possess a symmetric distribution on this coordinate in any time moment.
We follow this feature for all FDS under consideration.

One can see apparently from Fig. 2 (a, d, j, m) that the computer simulation results
are the same till certain time moment for all FDS. However, with time increasing, the
solutions, obtained using FDS 1.1 and FDS 1.2, lose their symmetry (Fig. 2 b, e). It is not
possible to correct this shortcoming by decreasing the grid step on time axis τ at con-
stant grid steps on spatial: for the FDS 1.1 τ decreasing leads to anomalous increasing
in iteration number (more than 400), which is necessary to achieve the Poisson equation
solution. Obviously, this is unacceptable for the practice. Under using the FDS 1.2 we
see improvement of the results with τ decreasing. However, we don’t still achieve com-
pletely solution symmetry (Fig. 2 h). The further time increasing leads to essential devia-
tion of obtained distributions (Fig. 2 c, f, i) from symmetrical distribution in x-coordinate.
This demonstrates essential influence of the time grid step on the solution, obtained using
the FDS developed on the base of the split-step method, and necessity of small grid steps
using. It means that the property of asymptotic stability of the FDS is absence. If we use
the FDS 2 it does not occur: the solution is symmetrical even for calculations providing
with rather big step τ=10−3 (Fig. 2 j–o).

This demonstrates the advantage of the proposed FDS 2 on the base of the two-stage
iteration process.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2: Free electron concentration distribution calculated for parameters ε1 = ε3 = 10−5, ε2 = ε4 = 10−7,
τ̄=10−4 at using the FDS 1.1 with τ=10−3 (a, b, c), the FDS 1.2 with τ=10−3 (d, e, f) and with τ=5·10−4

(g, h, i) the FDS 2 with τ=10−3 (j, k, l) and with τ=5·10−4(m, n, o).
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Table 1: The discrepancy accuracy |Ψ(ϕ)| evolution in time at using the criterion (3.23) and iteration parameters

ε1 = ε3=10−5, ε2 = ε4 =10−7, τ̄=10−4.

t=0.1 t=0.5 t=1 t=2 t=100 t=500 t=1000

τ=10−3

FDS 1.1 0.00071 0.01573 0.061 9.034 33.838 84.907 140.011

FDS 1.2 0.00152 0.01798 0.04682 0.14079 0.31716 0.33261 0.33354

FDS 2 0.000014 0.00012 0.00023 0.00017 0.00018 0.00043 0.00028

τ=5·10−4

FDS 1.1 0.00035 0.00786 0.0308 4.58 - - -

FDS 1.2 0.00075 0.00897 0.02339 0.07026 0.15858 0.16645 0.16833

FDS 2 0.000007 0.00007 0.00007 0.00013 0.00048 0.00026 0.00015

τ=5·10−6

FDS 1.2 0.000007 0.00009 0.00024 - - - -

Below we discuss an influence of calculation accuracy of the electric field potential
distribution on the problem solution. For this purpose we calculate the discrepancy ac-
curacy changing in time if we use the criterion (3.23) for the iteration process (3.20). As
one can see from the Table 1, the discrepancy Ψ(ϕ) achieves a high accuracy and its
value doesn’t practically increase in time if we use the FDS 2 for our calculations. Small
increasing of the discrepancy value at time moment t = 103 is caused by an iteration
process presence. Obviously, it brings some mistake in the problem solution as well as
round off errors. However, if the FDS possesses an asymptotic stability property, these
errors introduced in solution don’t increase. In the contrary, the FDS 1.2 does not pro-
vide conservation of Ψ(ϕ) value: its value increases monotonously with time increasing.
To achieve a satisfactory accuracy of Ψ(ϕ) at the FDS 1.2 using (the same order of the
accuracy, corresponding to the FDS 2) using we have to decrease grid step τ by three or-
der less in comparison with the FDS 2 using (see, for example, the discrepancy for t=1).
However, such grid step decreasing leads to unacceptable computer simulation time in-
creasing. That’s why, a value of the discrepancy Ψ(ϕ) is absent in the Table 1 for FDS 1.1

and FDS 1.2 on big time moments.

Regarding the FDS 1.1 it should be stressed that this FDS does not provide the dis-
crepancy conservation (it means that the discrepancy increases in time) and we have to
make too many number of iterations (more than 400) to achieve the iteration process con-
vergence. Moreover, after certain time moment, the discrepancy value changes less than
10−7 after 50 iterations.

Thus, the finite-difference FDS 2 has obvious advantages in comparison with two
other FDS if one need to make a computer simulation during long time interval or if a
problem solution possesses a strong gradient in one of spatial coordinates or in time.

However, we found out certain of parameter set, at which this FDS with the criterion
(3.23) does not provide the discrepancy Ψ(ϕ) conservation with rather high accuracy de-
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(a) Ψ(ϕ)=0.00166 (b) Ψ(ϕ)=0.00028 (c) Ψ(ϕ)=0.0012 (d) Ψ(ϕ)=0.00042

Figure 3: Free electron concentration distribution calculated for parameters τ = 10−3,ε1 = 10−4, ε2 = 10−6,
τ̄=10−4 using the FDS 2 and the iteration process (3.20) with the criterion (3.23) (ε3,ε4)=

(

10−3,10−5
)

(a),

(ε3,ε4)=
(

10−5,10−7
)

(b) or with the criterion (3.24) ε5 =5·10−3(c), ε5 =10−3(d) time moment t=1000.

Figure 4: Dependence of discrepancy accuracy preservation from iteration process convergence for parameters
(ε3,ε4)=(10−3,10−5) (1), (ε5)=(5·10−3) (2), (ε5)=(10−3) (3), (ε3,ε4)=(10−5,10−7) (4).

spite the fact that the condition (3.23) is satisfied. Let us stress, that a computation error
accumulation at electric field potential calculation leads to the problem solution symme-
try breaking. Therefore we control the accuracy of function ϕ calculation by means of the
discrepancy Ψ(ϕ). As one can see from Fig. 3, at high accuracy of Ψ(ϕ) (less than 10−3)
calculation, the free electron concentration distribution is symmetrical (Figs. 3b, 3d), but
the solution symmetry is broken if Ψ(ϕ) increases (Figs. 3a, 3c).

In Fig. 4 one can see dependence of a discrepancy Ψ(ϕ) accuracy on parameters ε3,
ε4, ε5. Other parameters are the same, as for Fig. 3. We can see high correlation between
the discrepancy Ψ(ϕ) accuracy and the solution symmetry violation.

Now let’s investigate the iteration process convergence for the Poisson equation.
Computer simulations results, obtained using the FDS 2, for the criterion (3.23) and
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Table 2: Discrepancy Ψ(ϕ) accuracy changing in time and number of iterations Np for the iteration process
(3.20) convergence achieving obtained on the first stage of the iteration process (3.13)-(3.16) for different time

moments t at using the criterion (3.23) or (3.24) with τ=10−3, ε1 =10−4, ε2 =10−6, τ̄=10−4.

∣

∣Fp+2−Fp
∣

∣≤ ε3 |F
p|+ε4

∣

∣F
p+2
x̄x +F

p+2
ȳy −γ

(s+1
n −

s+1
N
)∣

∣≤ ε5

ε3=10−3,
ε4=10−5

ε3=10−5,
ε4=10−7

ε5=5·10−3 ε5=10−3

t=1

I stage (|Ψ(ϕ)|;Np)
(

6,5·10−4;1
) (

10−4;10
) (

1,5·10−3;1
) (

6,5·10−4;1
)

II stage (|Ψ(ϕ)|;Np)
(

5,8·10−4;1
) (

1,2·10−4;1
) (

1,5·10−3;1
) (

5,8·10−4;1
)

t=10

I stage (|Ψ(ϕ)|;Np)
(

2·10−2;1
) (

5,2·10−4;26
) (

3,3·10−3;3
) (

9·10−4;7
)

II stage (|Ψ(ϕ)|;Np)
(

8,1·10−3;1
) (

5,6·10−4;1
) (

3·10−3;1
) (

8,2·10−4;1
)

t=100

I stage (|Ψ(ϕ)|;Np)
(

3,8·10−2;1
) (

3,3·10−4;20
) (

3,4·10−3;3
) (

9,7·10−4;6
)

II stage (|Ψ(ϕ)|;Np)
(

6,3·10−3;1
) (

2,1·10−4;1
) (

3,5·10−3;1
) (

7,3·10−4;1
)

t=1000

I stage (|Ψ(ϕ)|;Np)
(

2,8·10−2;1
) (

3,3·10−4;13
) (

2,1·10−3;3
) (

7,3·10−4;6
)

II stage (|Ψ(ϕ)|;Np)
(

5,4·10−3;1
) (

3,1·10−4;1
) (

1,5·10−3;1
) (

5,7·10−4;1
)

(3.24), are shown in the Table 2, because other FDS are essentially worse for our problem
solution. It should be noted, that the difference between obtained results if we use dif-
ferent criteria for the iteration process (3.22) convergence, are shown at early time points
and they increase eventually. As we can see from the Table 2, under certain iteration pa-
rameters (for example, rather small values of ε3, ε4, ε5) the iteration convergence criterion
choice does not influence on the discrepancy accuracy conservation and on performance
of the iterative process (3.22) convergence. However, with ε3, ε4, ε5 increasing, the crite-
rion (3.24) seems more effective, because its using allows to calculate Ψ(ϕ) with higher
accuracy under the same condition. As for calculations with using the criterion (3.23), it
should be noted that at rather small values of the iteration parameters ε3, ε4, the achieve-
ment of enough small Ψ(ϕ) values is possible. However for this purpose it is required
bigger number of iterations, than in the case of using the criterion (3.24).

One of the ways for iteration process property improvement, known in literature [25],
is the regularization method. As example, we apply this method for the FDS 2 in com-
bination with the criterion (3.24) by adding the following summand to the right part of
equation concerning the free electrons concentration in (3.15)-(3.18):

νx

(

s+1
n −

s
n

)

, νx = const.
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In some cases, using such kind of the regularization, it is possible to do a computation
with large grid steps. Moreover, computer experiments demonstrated that the best re-
sults are reached at νx=0 for the problem under consideration, which is equivalent to the
FDS 2. One needs to stress that for νx 6= 0 we obtain the same solution of the problem,
but it takes more computational time due to iteration number increasing for the process
(3.22).

5 Conclusions

In this paper the advantages of the FDS on the basis of the two-stage iteration process
are demonstrated using computer simulation. One of its main advantages consists in
property of the asymptotic stability. Thus, it is possible to provide a computation on long
time interval without the conservatism property losing. Another feature of this iteration
process consists in the conservatism property of the FDS on each of iterations.

We proposed new estimation to construction for the iterative process accuracy with
respect to the solution of the Poisson equation concerning the electric field potential,
induced by laser pulse. It is based on the criterion of the discrepancy accuracy estimation.
This allows to calculate the electric field potential with high accuracy and with good
high-speed performance. Accuracy of the electric field potential calculation influences
in a strong way on the problem solution. If this accuracy is not high enough, then the
problem solution can lose its symmetry.
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