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Abstract. We consider a system of liquid crystal modeled by hard spherocylinders. In
certain range of the pressure, the system exhibits two metastable phases: the isotropic
phase and the nematic phase. In the isotropic phase, the spherocylinders are randomly
packed. In contrast, the spherocylinders are well-ordered in the nematic phase. The
isotropic-nematic phase transition is a rare event because it involves the crossing of
energy barrier(s). This makes direct simulations, e.g. using molecular dynamics, of
the transition event infeasible. In this paper, we study the phase transition in a coarse-
grained space formed by two collective variables: the order parameter of the sphero-
cylinders and the volume of the system. We compute the free energy in the collective
variable space, the minimum free energy path (MFEP) between the isotropic phase and
the nematic phase, and the transition state. Our results reveal the multilayer structure
of the critical nucleus. The nucleus will grow further and evolve to the nematic phase
after it crosses the energy barrier.
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1 Introduction

Liquid crystals formed by hard rod-like particles exhibit different metastable phases
as observed in the experiments [1, 2], including the disordered isotropic phase and the
aligned nematic phase. A phase diagram in the space of the concentration and the aspect
ratio of the rod-like particles was constructed in Ref. [1]. In certain range of the concentra-
tion and the aspect ratio, the isotropic phase and the nematic phase coexist as metastable
phases. The isotropic-nematic phase transition is a rare event since it involves the cross-
ing of energy barrier(s). The formation of critical nucleus during the phase transition was
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investigated using computer simulations, such as biased Monte Carlo simulations [3–5].
In this work, we study the mechanism of isotropic-nematic phase transition using the
string method [6–11].

A theoretical explanation for the formation of the nematic liquid crystal from the
isotropic phase was provided by Onsager [12]. He explained that the isotropic-nematic
phase transition could be purely entropy based. Two types of entropies compete here:
the orientational entropy drives the system towards the isotropic phase in which both
centers and orientations of the particles are randomly distributed, while the translational
entropy drives the system towards the ordered nematic phase to minimize the excluded
volume. Therefore, the ordering of the rod-like particles is closely related to the entropy
of the system. This ordering can be described by an orientational order parameter [13],
which measures the average alignment of the particles with respect to a common direc-
tion. In this work, we use this order parameter to distinguish the isotropic phase from
the nematic phase.

Computer simulations of the particle system using hard spherocylinders play an im-
portant role in the current understanding of the liquid crystals. A mathematical model
was proposed by Few & Rigby [14] and Vieillard [15], in which the rod-like particles
were modeled as hard spherocylinders with radius R and a cylindrical segment of length
h. The study of the system using molecular dynamics (MD) simulations was then con-
ducted by Rebertus & Sando [16]. Afterwards, the phase diagram of the spherocylin-
der system in the space of concentration and aspect ratio h/R of spherocylinders was
investigated [17, 18] using the MD simulations. It was shown that in certain range of
concentration and aspect ratio, the isotropic phase and the nematic phase may coexist as
metastable phases. The isotropic-nematic phase transition was studied using the biased
Monte Carlo simulations [3–5]. These studies revealed a lamellar crystallite structure at
the early stage of the nucleation. However, the subsequent thickening of the lamella is
hindered by the fact that the top and bottom surfaces of the crystallite are preferentially
covered by spherocylinders that align parallel to the surface. The energy barrier is too
large for the simultaneous formation of multilayer nematic cluster. The lamellar crystal-
lite can only grow laterally, leading to a single layer of nematic phase.

In this work, we use the orientational order parameter and the volume of the system
as the collective variables (CVs) and study the isotropic-nematic phase transition in the
CVs space. We compute the critical nucleus, the free energy barrier and the minimum free
energy path (MFEP) using the string method. We identify the transition state in the CVs
space. The atomistic configurations sampled from the transition state exhibit multilayer
structures. This approach is similar to the study conducted by Yu et al. [19]. In that
work, they studied the crystal polymorphism in a particle system. The Steinhardt order
parameters were used to distinguish the different metastable phases such as fcc and bcc
structures. The order parameters were then selected as the CVs and the mechanism of
the phase transition was studied using the string method. For the recent development of
the numerical methods in the study of nucleation in phase transformations, we refer to a
recent review paper [20].
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The paper is organized as follows. In Section 2, we describe the MD system in which
the particles are modeled as spherocylinders. In Section 3, we describe the numeri-
cal method and present the numerical results for the free energy, the pathway for the
isotropic-nematic phase transition, and the transition state. The paper is concluded in
Section 4.

2 Mathematical model

We consider a particle system consisting of N hard spherocylinders. Each spherocylinder
consists of a cylinder part of length h and a cap in the shape of a hemisphere of radius R
at each end. The spherocylinder is characterized by the center c and the axis of symmetry
u with ‖u‖= 1. The free motion of the spherocylinder is of two kinds: the translational
motion of the center c and the rotational motion of the symmetry axis u. The rotational
motion can be decomposed into two parts: one is the rotation of the spherocylinder about
the symmetry axis u and the other is the rotation of the symmetry axis. Here we neglect
the rotational motion of the spherocylinder about the symmetry axis, and only consider
the rotational motion of the symmetry axis. We denote the angular momentum by ω. The
corresponding mass moment of inertia is given by

I=πρR5

[

h

12R

(

3+
h2

R2

)

+

(

8

15
+

h2

3R2
+

h

2R

)]

, (2.1)

where ρ is the density of the spherocylinder. A derivation of the above mass moment is
given in Appendix A. In this work, we assume that each spherocylinder has mass 1. Let
Vsc be the volume of the spherocylinder, then ρ= 1

Vsc
.

The free motion of the spherocylinder is governed by the following ordinary differ-
ential equations

ċ=p,

Iu̇=ω×u,
(2.2)

where the dots denote the derivative with respect to time. In Eq. (2.2), the center of the
spherocylinder c is advected by the translational velocity p, and the symmetry axis u

rotates with the angular momentum ω.

The spherocylinders interact with each other only through collision, which is modeled
by the pair-wise potential

U(d)=

{

0, if d>0,

∞, if d=0,
(2.3)

where d is the surface-to-surface distance between two spherocylinders. When two sphe-
rocylinders collide, they will repel each other and move in the opposite directions. Fig. 1
shows the situation when two spherocylinders i and j are in contact. Denote by ri and
rj the vectors from the centers ci and cj to the contact point, respectively. Let n be the
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Figure 1: Two spherocylinders i and j in contact with each other. ri and rj are the vectors from the center ci

and cj to the contact point, respectively. n is the unit outward normal vector to the surface of spherocylinder i
at the contact point.

outward unit normal vector to the surface of the spherocylinder i at the contact point.
After collision, the translational velocity and the angular momentum are given by [21]

p′
i =pi+∆pji,

p′
j=pj−∆pji,

ω
′
i =ωi+ri×∆pji/I,

ω
′
j =ωj−rj×∆pji/I,

(2.4)

where ∆pji is the collision impulse given by

∆pji =

〈

−gij,n
〉

n

1+(|ri×n|2+|rj×n|2)/2I
, (2.5)

where gij=pi−pj+ωi×ri−ωj×rj is the velocity of particle i relative to particle j and 〈·,·〉
denotes the inner product between two vectors.

The internal pressure of the system can be computed using the following formula [22]:

Pint=
1

3V

[

N

∑
i=1

p2
i +

N

∑
i=1

〈Fi,ci〉

]

, (2.6)

where V is the total volume of the system, and Fi is the total force exerted on the particle
i

Fi=
N

∑
k=1

Fki, (2.7)
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where Fki is the force exerted by the particle k on the particle i and Fii =0. Hence, we can
rewrite the second term in Eq. (2.6) as

N

∑
i=1

〈Fi,ci〉=
N

∑
i=1

N

∑
k=1

〈Fki,ci〉

=
N

∑
i=2

i−1

∑
k=1

〈Fki,ci〉+
N−1

∑
i=1

N

∑
k=i+1

〈Fki,ci〉

=
N

∑
i=2

i−1

∑
k=1

〈Fki,ci〉+
N−1

∑
k=1

N

∑
i=k+1

〈−Fki,ck〉

=
N

∑
i=2

i−1

∑
k=1

〈Fki,(ci−ck)〉, (2.8)

where we have used the fact that Fki =−Fik. Therefore the internal pressure Pint can be
rewritten as

Pint=
1

3V

[

N

∑
i=1

p2
i +

N

∑
i=2

i−1

∑
k=1

〈Fki,(ci−ck)〉

]

. (2.9)

For the system considered here, the forces Fki are singular as the inter particle potential is
infinite when two particles collide and zero otherwise. In the computation, we approxi-
mate the forces by the change of momentum per unit time given by [16]

Fki(t)≈
1

τ ∑∆pki, (2.10)

where the summation is taken over all collisions between particle k and i within the time
window [t−τ,t], and ∆pki is the collision impulse given in Eq. (2.5). If no collision occurs
in the time window [t−τ,t], we set Fki(t)=0.

We study the system using MD simulation in the isothermal-isobaric (NPT) ensemble,
in which the pressure and temperature of the system are maintained at prescribed values.
The MD algorithm is based on the one in Ref. [23] which was originally proposed for
systems of spherical particles. In this work, the scheme is modified to adapt to the hard
spherocylinder system. We use the Langevin dynamics to control the temperature. To
control the pressure, the volume of the system evolves according to

V̇=
3pb

W
V,

ṗb =3V(Pint−P),
(2.11)

where pb is the barostat moment, W is the barostat mass and P is the external pressure.
At each MD time step, we check whether collision occurs between particles. Two sphe-
rocylinders collide when they overlap and their relative motion is towards each other,
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Figure 2: The isotropic phase (left) and the nematic phase (right) of the spherocylinder system obtained from
the MD simulation.

namely: (1) r < D and (2)
〈

gij,n
〉

> 0, where r is the distance between the two line seg-
ments on the central axes of the cylinder part of the two spherocylinders, and D=2R is
the diameter of the cylinder.

We use N = 3087 spherocylinders with an aspect ratio h/D = 2 in a cubic periodic
box. We use D and kBT as the unit of length and the unit of energy, respectively. The
internal pressure Pint is computed by Eq. (2.10) with observation time τ=1. The external
pressure is fixed at P=6.5. At this pressure, the system exhibits two metastable phases:
the isotropic phase and the nematic phase as shown in Fig. 2. This is consistent with
the phase diagram in Ref. [18]. The transition from one phase to another never occurs
on the time scale of our simulation. In the simulation, the volume is updated according
to Eq. (2.11) to control the internal pressure. The difference of the volume between the
isotropic phase and the nematic phase is about 16%. Thus, the volume V can be iden-
tified as a coarse-grained variable to distinguish the two metastable phases. In the next
section, we will introduce another coarse-grained variable, called the order parameter, to
characterize the two phases.

3 Isotropic-nematic phase transition

3.1 Collective variables and MFEP

The volume of the system V and the order parameter S are used as the collective variables
(CVs) to study the isotropic-nematic phase transition. The order parameter measures the
ordering of the spherocylinders along a common direction. To define the order parameter,
we consider the following tensor Q

Qα,β=
1

N

(

N

∑
i=1

3

2
uiαuiβ

)

−
1

2
δαβ, α,β= x,y,z, (3.1)

where the sum is taken over all spherocylinders in the system, uix,uiy,uiz are the three
components of the symmetry axis u of the spherocylinder i, and δαβ = 1 if α = β and
0 otherwise. The order parameter S is given by the largest eigenvalue of Q [13]. The
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corresponding eigenvector, denoted by v with ‖v‖=1, is called the nematic director. For
the two phases shown in Fig. 2, the order parameter is S≈ 0 for the isotropic phase and
S≈1 for the nematic phase.

For ease of presentation, we define the vector r = (c,u,V) which consists of the po-
sition and orientation vectors of all the spherocylinders and the volume of the system.
Furthermore, we denote the two collective variables by θ=(θ1,θ2), where θ1(r)=V and
θ2(r)=S. The free energy in the CVs space is given by

F(z)=−kBT ln

(

Z−1
∫

e−H(r)/kBTδ(z1−θ1(r))δ(z2−θ2(r))dr

)

, (3.2)

where z=(z1,z2), H(r)=∑i 6=jU(dij)+PV with dij being the surface-to-surface distance
between particles i and j, and δ(·) is the Dirac delta function. The minimum free energy
path (MFEP), which is denoted by z(α) with α∈ [0,1] being the parameterization of the
path, is defined as the curve in the CVs space which connects two local minima of the
free energy F(z) and satisfies the following condition [10]:

z′(α)‖M(z(α))∇zF(z(α)), α∈ [0,1], (3.3)

where M(z) is the matrix given by

Mij(z)=
〈

∇rθi ·∇rθj

〉

θ=z
, i, j=1,2, (3.4)

where 〈·〉
θ=z denotes the ensemble average with the CVs constrained at the target value

z. The matrix M and the mean force −∇zF can be computed using restrained MD simula-
tions [10]. Specifically, to constrain the volume V at z1, an additional force corresponding

to the potential κ
2 (V−z1)

2 is added to Eq. (2.11):

ṗb =3V(Pint−P)−κ(V−z1). (3.5)

Similarly, we introduce the harmonic potential κ
2 (S−z2)

2 to constrain the order parame-
ter S at z2. The angular momentum of each spherocylinder evolves according to

ω̇k =−(uk×κ(S(r)−z2)∇uk
S), (3.6)

where uk = (ux,uy,uz) is the symmetry axis of particle k and ∇uk
S = ( ∂S

∂ux
, ∂S

∂uy
, ∂S

∂uz
). For

ease of notation, we have neglected the subscript k in the components ux, uy and uz. The
matrix M and the mean force −∇zF can be computed by time-averaging ∇rθi ·∇rθj and
−κ(zj−θj(r)) following the trajectory of the restrained MD, respectively [10].

The vector ∇uk
S in Eq. (3.6) is computed as follows. Let v be the unit eigenvector

corresponding to S. Then we have S = vTQv. The differential of S is given by dS =
(dv)TQv+vTdQv+vTQdv. Since ‖v‖=1, we have d‖v‖2=2(dv)Tv=2vTdv=0. Therefore
dS=vTdQv. So we can compute ∇uk

S using

∂S

∂ui
=vT ∂Q

∂ui
v, i= x, y, z, (3.7)
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where

∂Q

∂ux
=

1

N





3ux
3
2 uy

3
2 uz

3
2 uy 0 0
3
2 uz 0 0



, (3.8)

∂Q

∂uy
=

1

N





0 3
2 ux 0

3
2 ux 3uy

3
2 uz

0 3
2 uz 0



, (3.9)

∂Q

∂uz
=

1

N





0 0 3
2 ux

0 0 3
2 uy

3
2 ux

3
2 ux 3uz



. (3.10)

3.2 The string method

We use the on-the-fly string method in collective variables [10, 11] to compute the MFEP
connecting the two local minima on the free energy landscape. The two local minima,
which correspond to the isotropic phase and the nematic phase respectively, are shown
in Fig. 3. In the figure, we have rescaled the variable z1 by the factor 1650 which approx-
imates the difference of the volume between the two phases. In the presentation below,
we will use this rescaled variable. With a slight abuse of notation, we still denote it using
z1.

The initial string is constructed using the linear interpolation between the two local
minima in the CVs space. In the computation, the string is discretized into N=35 images
{z1,··· ,zN} by equal arc length. For each image zk, we assign an atomistic replica rk.
The replica rk is constrained at the target value zk of the CVs. The discretized string
and the corresponding atomistic replicas are evolved using the time step ∆t during the
simulation. Denote by zn

k and rn
k the k-th image and the corresponding atomistic replica at

time tn =n∆t, respectively. At each time step, the discrete images and the corresponding
replicas are updated following the two-step procedure:

1. Evolve each image zn
k and the corresponding replica rn

k , where k=1,··· ,N, concur-
rently by one time step ∆t:

• Update the atomistic replica rn
k by running the restrained MD as discussed in

the previous section by one time step with the collective variables θ(r) con-
strained at zn

k . The new configuration of the replica is denoted by rn+1
k .

• Estimate the matrix M and the mean force using rn+1
k :

Mij ≈∇rθi(r
n+1
k )·∇rθj(r

n+1
k ), i, j=1,2, (3.11)

∇zF≈κ(zn
k −θ(rn+1

k )), (3.12)

then evolve the image zn
k using the forward Euler scheme by one time step

z∗k =zn
k −

∆t

γ
M∇zF. (3.13)
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Figure 3: The MFEP connecting the nematic phase (top left) and the isotropic phase (bottom right). The
variable z1 has been rescaled by the difference of the volume between the isotropic and nematic phases. Along the
MFEP, the free energy attains the maximum between the two images marked by filled circles. The background
shows the contour plot of the free energy constructed using radial basis functions.

The parameter γ is chosen large enough to slow down the dynamics of the string,
so that the atomistic replica has enough time to equilibrate at the current value of
the CVs.

2. To ensure a uniform distribution of the images along the string, the images z∗k ,
where k = 1,··· ,N, are redistributed using the linear interpolation. The new im-
ages are denoted by zn+1

k . For details of the interpolation algorithm, we refer to the
original paper on the string method [6–8].

The above two steps are repeated until the string reaches the steady state. At the steady
state, the string locates the MFEP which gives the most probable pathway for the isotropic-
nematic phase transition.

3.3 Numerical results

In the computation, the parameters are taken as κ = 105 and γ= 103, ∆t = 0.001. Fig. 3
shows the contour plot of the free energy F(z1,z2) and the MFEP. The free energy was
computed using the single-sweep method [24]. The algorithm of the single-sweep method
is reviewed in Appendix B. The MFEP connects the nematic phase (top left) and the
isotropic phase (bottom right). The deviation of the end points of the string from the
local minima is due to the small magnitude of the mean force near the minima, and the
error in the construction of the free energy using a finite number of radial basis functions.
We notice that the free energy was not used in the calculation of the MFEP. The MFEP
was computed using the mean force obtained from the atomistic configurations. We also
notice that the MFEP does not follow the MEP of the free energy due to the tensor M
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Figure 4: The free energy along the MFEP. The maximum of the free energy occurs between the two images
marked by filled circles.
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Figure 5: The volume V and order parameter S of the 35 atomistic configurations sampled from zL (left) and
zR (right) respectively after a certain number of steps of relaxation. The initial position of the samples are
marked by triangles (△). About 71.4% of the samples from zL (left) relaxed towards the nematic phase (S≈1),
while about 65.7% of the samples from zR (right) relaxed towards the isotropic phase (S=0).

involved in the definition of the MFEP in Eq. (3.3). The free energy along the MFEP is
shown in Fig. 4. The maximum of the free energy along the MFEP occurs between the
two images marked by filled circles in Fig. 3. These two images are denoted by zL and
zR, respectively.

The transition state lies in between the images zL and zR. To verify this, we sam-
pled 35 atomistic configurations from zL and zR, respectively. These samples were then
released and they relaxed to one of the two metastable phases. In Fig. 5, we plot the posi-
tion of these samples in the CVs space after a certain number of time steps of relaxation.
It shows that most of the samples from zL (71.4%) evolved to the nematic phase, while
most of the samples from zR (65.7%) evolved to the isotropic phase. This confirms that
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Figure 6: Typical atomistic configurations sampled from zR. Particles in the isotropic phase and in the nematic
phase are represented by dots (·) and rods (|), respectively. A particle is classified as being in the nematic
phase if its local order parameter is larger than 0.4.

the transition state, at which the system has equal probability to evolve to each of the two
metastable phases, lies in between the images zL and zR.

Next, we examine the local structures of those atomistic configurations sampled from
zR. The local structure of the spherocylinder system can be characterized by the local
order parameter given by [3]

Sloc(i)=
1

ni

ni

∑
j=1

(

3

2
|ui ·uj|

2−
1

2

)

, (3.14)

where ni is the number of particles in the neighborhood of particle i. The particle is
considered to be in the neighborhood of the particle i if their face-to-face distance is less
than 1.5D. This local order parameter describes the nematic ordering of a particle with
respect to its neighboring particles. The particle i is classified as in the nematic phase if the
local order parameter Sloc(i)>K. We use K=0.4 following Ref. [3]. With this criterion, we
can identify the nematic cluster(s) formed during the isotropic-nematic phase transition.

Different atomistic structures are observed in the samples from zR. Fig. 6 shows three
representative structures of the nematic cluster. Multilayer structures are observed in
all the three samples. There are two separated clusters in the first sample and only one
cluster in the other two samples. Moreover, we found that the stability of the nematic
cluster depends on its size, which can be seen from Fig. 7. The figure shows the order
parameter S of the final state after free relaxation versus the number of nematic particles
in the initial state. It can be seen that the samples with more nematic particles are more
likely to evolve to the nematic phase under free relaxation.

4 Conclusions

In this work, we studied the isotropic-nematic phase transition of liquid crystals using
an atomistic model consisting of spherocylinders. We employed the order parameter
and the volume of the particle system as the collective variables and computed the MFEP
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Figure 7: The order parameter S of the samples from zR after relaxation versus the number of nematic particles
in the initial configuration of the samples. The dashed line is a fit of the pattern of the points.

in the collective variable space using the string method. The transition state was identi-
fied along the MFEP. It was observed that the isotropic-nematic phase transition occurs
via nucleation of nematic clusters, which exhibit multilayer structures near the transi-
tion state. The nematic nucleus with more nematic-like particles is more likely to evolve
towards the nematic phase.

In this study, only the global order parameter and the volume of the system are used
as collective variables. This reduces the complexity of the computation. More detailed
descriptions, for example, by including the local order parameter in the CVs space, will
be investigated in our future work. This will help better quantify the structures of the
transition state at the microscopic level.
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Appendices

A Mass momentum of inertia

The mass momentum of inertia of the spherocylinder, shown in Fig. 8, with respect to
the x axis is the sum of the corresponding moments of the cylinder and of the two hemi-
spheres:

Ix = Ic
x+2Is

x. (A.1)
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Figure 8: Schematics of the spherocylinder.

The moment of the cylinder around the x axis is given by

Ic
x =

∫

Ωc

(z2+y2)ρdV=
1

12
πρR2h3+

1

4
πρR4h, (A.2)

where ρ is the (constant) mass density of the spherocylinder, and the volume integral
is over the whole cylinder. Using the parallel axis theorem, the moment of inertia of a
hemisphere around the x axis is given by

Is
x = Is

x′−mz2
CM+m

(

1

2
h+zCM

)2

, (A.3)

where Is
x′ is the moment of the hemisphere around the axis through the center of the

sphere as shown in Fig. 8, m = 2
3 πρR3 is the mass of the hemisphere, and zCM = 3

8 R is
distance of the center of mass of the hemisphere to the center of the sphere. The moment
of the hemisphere Is

x′ is simply half of the moment of the whole sphere

Is
x′ =

1

2
·

8

15
πρR5=

4

15
πρR5. (A.4)

Inserting the above results in Eq. (A.3) yields

Is
x =πρR3

(

4

15
R2+

1

6
h2+

1

4
Rh

)

. (A.5)

The summation of Ic
x in (A.2) and twice of Is

x in (A.5) yields the formula for the moment
of the spherocylinder given in (2.1).
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B Free energy calculation

To construct the free energy surface, we use the single-sweep method proposed in Ref. [24].
First, we use the temperature accelerated molecular dynamics to explore the configura-
tion space of the particle system, and generate K centers z1,··· ,zK in the CVs space. Then
the mean force fk is calculated at each center using a time averaging approach [10]. These
forces are used to construct the free energy surface using a set of radial basis functions
(RBFs).

We write the free energy F(z) as a linear combination of RBFs:

F(z)=
K

∑
k=1

akφσ(|z−zk |), (B.1)

where φσ(r)= exp(−r2/2σ2) is a Gaussian kernel with width σ. In [24], the coefficients
ak and the width σ are determined via the minimization of the error function

E(a,σ)=
K

∑
k=1

| fk+∇zF(zk)|
2, (B.2)

where a=(a1,a2,··· ,aK). This error function measures the absolute error in the approx-
imation of the mean force. For the spherocylinder system considered in this work, the
magnitude of the mean force is significantly larger at some centers than others, so the
terms in the summation in Eq. (B.2) are at different scales. Hence, it makes more sense to
minimize the relative error instead,

Ẽ(a,σ)=
K

∑
k=1

| fk+∇zF(zk)|
2

| fk|2
. (B.3)

For a fixed value of σ, the minimization of the error function Ẽ(a,σ) over the coefficients
can be done by solving a system of linear equations for ak. This calculation is carried out
for a range of values of σ to find the optimal choice for the width of the RBFs.

The free energy for the spherocylinder system is shown in Fig. 3. The free energy was
constructed using K= 47 centers, which were generated by the temperature accelerated
molecular dynamics with the pairwise distance d>0.165.
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