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Abstract. This work presents two computational efficiency improvements for the hy-
bridizable discontinuous Galerkin (HDG) fluid-structure interaction (FSI) model pre-
sented by Sheldon et al. A new formulation for the solid is presented that eliminates
the global displacement, resulting in the velocity being the only global solid vari-
able. This necessitates a change to the solid-mesh displacement coupling, which is
accounted for by coupling the local solid displacement to the global mesh displace-
ment. Additionally, the mesh basis and test functions are restricted to linear polyno-
mials, rather than being equal-order with the fluid and solid. This change increases the
computational efficiency dynamically, with greater benefit the higher order the com-
putation, when compared to an equal-order formulation. These two improvements
result in a 50% reduction in the number of global degrees of freedom for high-order
simulations for both the fluid and solid domains, as well as an approximately 50%
reduction in the number of local fluid domain degrees of freedom for high-order sim-
ulations. The new, more efficient formulation is compared against that from Sheldon
et al. and negligible change of accuracy is found.

AMS subject classifications: 65M60, 74F10

Key words: Hybridizable discontinuous Galerkin, fluid-structure interaction, HDG FSI, mono-
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1 Introduction

Many natural phenomena, such as blood transport or aeroelastic flutter [1], require tight-
ly coupled fluid-structure interaction (FSI) simulations to accurately represent the com-
plex multi-physics. FSI simulations, particularly those involving large amplitude, low
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frequency, solid deformation, are substantially more computationally expensive and dif-
ficult to model than traditional fluid-only or solid-only simulations due to the tight cou-
pling on fluid-solid interface and the disparate mathematics used to describe the fluid
and solid regions in the models [2]. With the goal of reducing the computational expense
associated with FSI simulations, the hybridizable discontinuous Galerkin (HDG) method
was first utilized for FSI simulation by Sheldon et al. [3, 4]. The HDG method is a re-
cently developed finite element method that has the benefits of discontinuous Galerkin
(DG) methods, such as scalability in parallel, local conservation of variables, stability
with complicated geometries, and high-order accuracy based on the degree of the ap-
proximating polynomial [5], while reducing the high computational cost associated with
DG methods [6]. This reduction is achieved by separation (hybridization) of the solution
into local element solutions and global trace solutions on the element interfaces. This
minimizes the number of globally coupled degrees of freedom (DOFs), along with the
computational cost of solving the global system, while preserving the benefits of DG
methods. Only the primary variable of interest, referred to as the hybrid unknown, exists
in both the local and global solution spaces, and it is the only unknown solved for glob-
ally, i.e., across the entire mesh, in this formulation. The individual local variables can be
solved in an inherently parallel fashion, being completely decoupled from one another.

This work does not focus on deriving formulations with the HDG method or on FSI in
general. For more on these topics, please see Sheldon et al. [3,4,7]. Additionally, Nguyen
et al. present an excellent introduction to the HDG method in [8] for Stokes flow and in [9]
for an overview to a wide variety of physics. Extensive literature exists on a multitude
of other computational methods for FSI, e.g. [10–12], and the interested reader is referred
to the references therein for further information. This work also does not tackle many of
the items identified as future work for HDG FSI in [3, 4, 7], including: higher order post-
processing, the non-linear solid strain’s suboptimal convergence rate, parallel processing
scaling and efficiency studies, investigation of optimal stabilization parameters for HDG
multiphysics, and a full three-dimensional HDG FSI study. These remain interesting and
important areas of future work, each worthy of their own investigation.

Instead, the focus of this work is a reduction in the number of DOFs for the HDG
FSI system and the resultant increase in computational efficiency over the formulations
presented in [3, 4]. Two factors contribute to this DOF reduction. First, the global solid
displacement is eliminating from the solid formulation. This has repercussions on the
solid-mesh FSI coupling that are discussed later. Second, the function spaces for the mesh
test and basis functions are restricted to linear polynomials, regardless of the order of the
rest of the simulation. The computational effects of these two changes is a 50% reduction
in the number of global DOFs for high-order simulations across both the fluid and solid
domains, as well as an approximately 50% reduction in the number of local fluid domain
DOFs for high-order simulations. The specific DOF reductions versus simulation order
are detailed in Appendix A and Table 4.

In the following section a brief background of the mathematics necessary for HDG
FSI modeling is presented. Next, the fluid, solid, and mesh formulations from [3, 4] are
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reproduced, but not derived (see [3, 4] for full derivation), and then the modifications to
these formulations discussed above are presented. With the new formulations, the same
code-to-code comparisons performed in [3, 4] are repeated and the results are shown to
be indistinguishable, except for a substantial DOF reduction. Finally, a brief discussion
of stability is presented along with some concluding remarks.

2 Background mathematics

A mathematical model of FSI requires governing equations for both fluid systems and
solid systems, along with the coupling that combines them. The fluid formulation pre-
sented herein is the unsteady incompressible Navier-Stokes equations, cast into the Ar-
bitrary Lagrangian Eulerian (ALE) framework. For the solid equations, a Saint Venant-
Kirchhoff non-linear elastodynamics formulation is presented, while a linear elastostatics
formulation is used for mesh motion. This last formulation, with arbitrary (user chosen)
material properties, is used to update the computational domain on which the fluid is
solved (necessary for the ALE Navier-Stokes formulation). Before these formulations
themselves can be presented, a certain level of background information is necessary.

2.1 Kinematics

The modeling process for fluids and solids is very similar; however, there are some differ-
ences that need to be addressed. Fluid equations are typically written in the Eulerian (de-
formed) reference frame, while solid equations are generally written in the Lagrangian
(referential) reference frame. There is a disconnect between these frames on the fluid-
solid interface that can be accounted for in various ways, such as the immersed boundary
method [13, 14] or the ALE method [15, 16]. In this work, the ALE formulation is used
for the fluid, which accounts for the change in frame by transforming the standard Eule-
rian governing differential equations into a form defined on the reference configuration
ΩF(0). There are many references that provide more details on kinematics and reference
frames, such as Gurtin [17] or Spencer [18]; however, for this work it is worth specifically
noting the following.

The position of a material point in some reference body βκ (before deformation) is X,
while the position of a material point in a deformed configuration β, known as the spatial
point, is x. The deformation function χ(X,t) maps a material point X to the spatial point
x at the instant of time t. Considering a smooth sequence of configurations ordered in
time, a motion is defined as

χ(X,t)=x(X,t)=X+u, (2.1)

where u is the displacement vector, given by

u=x(X,t)−X. (2.2)
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Operators with capitalized first letters (e.g. Grad) denote differential operators with re-
spect to the referential/material coordinate X, while those with lower-case first letters
(e.g. grad) denote differential operators with respect to the spatial/deformed coordi-
nate x. The deformation-gradient can be expressed as

F(X,t)=Gradχ= I+Gradu, (2.3)

and the determinant of F is
J=det(F). (2.4)

In Section 3.1, F and J are used for push-forward and pull-back operations in the ALE
description of the fluid region.

2.2 FSI

For FSI, the displacement vector is piecewise defined over the solid and fluid subregions
as

u=

{
us, ∀X∈ΩS,

um, ∀X∈ΩF,
(2.5)

where ΩS is the solid subdomain, ΩF is the fluid subdomain, us is the solid displacement
and um is the (arbitrary) displacement of the (mesh) fluid subdomain. The displacement
of the fluid subdomain is governed by the mesh motion, hence the subscript “m” and
not “f”, where the subscripts “m”, “s”, and “f” refer to “mesh”, “solid”, and “fluid”
respectively. Continuity of displacement on the fluid-solid interface requires

us−um=0, ∀X∈ΓFS , (2.6)

where ΓFS=ΩS∩ΩF is the interface between the solid and fluid subdomains.

2.3 Spatial discretization

Regardless of the differential equations being solved, the process of spatial discretization
is always roughly the same. Given an arbitrary spatial domain Ω over which some gov-
erning equation should be solved, break that domain into a sufficiently regular collection
T h of disjoint elements K, with faces F. This collection defines the mesh, or triangula-
tion, which serves as a model for the original domain. The governing equations, written
in their strong form, have their primary variables approximated by discretized counter-
parts, are weighted with some arbitrary function, and are integrated over their respective
domains, resulting in the weak form of the governing equations. Typically, the test func-
tions (indicated with a tilde) and basis functions for the approximated primary variables
(indicated with a superscript h) are chosen from the same finite dimensional solution
spaces. An example space for some discretized variable ah is

A
h :=

{
ah∈

[
L2
(
T h
)]d

: ah
∣∣∣
K
∈ [Pk(K)]d , ∀K∈T h

}
, (2.7)
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where d is the dimension of a given space, Pk (K) denotes the space of polynomials of at
most degree k on element K, and L2(K) denotes the space of square integrable functions
on K.

2.4 Temporal discretization

Temporal discretization is not the focus of this work. See [19] (or many other sources) for
derivation, discussion, and presentation of a variety of temporal discretization methods.
All results presented in this work use the second-order backwards difference formula
(BFD2), which approximates the solution to

dy(t)

dt
= f(y(t) ,t) , (2.8)

as

3yn+2−4yn+1+yn=2∆tf(tn+2) , (2.9)

where the subscripts indicate information from various timestep levels.

3 Fluid-structure interaction model

In this section the model for HDG FSI is presented. First, the fluid governing equations
are presented in their ALE form, while the mesh and solid governing equation are pre-
sented in their Lagrangian forms. Second, the constraints necessary for FSI coupling are
discussed and the function spaces for the discretized variables are presented. Finally, the
HDG formulations from [3,4] are reproduced along with their DOF reduced counterparts.
The derivations for the following formulations are only presented when derivations dif-
fer from those presented in [3, 4]. Commentary is made throughout the entire section on
the changes necessary for the DOF reduction. The formulations in this section loosely
follow the work of Nguyen et al. [9, 20], Soon et al. [21], and Kronbichler et al. [22], with
specific attributions given in the full derivations found in [3, 4].

3.1 Governing equations

3.1.1 ALE formulation of Navier-Stokes equations

Presented below are the strong forms of the ALE incompressible Navier-Stokes equa-
tions, including the conservation of linear momentum, a kinematic compatibility equa-
tion for the velocity-gradient, the continuity equation, and appropriate boundary con-
ditions. The primary fluid variables being solved for are the velocity v (hybrid), the
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pressure p, and the velocity gradient L.

ρf
∂vf

∂t
+ρfLf [vf−vm]+Grad(pfI−µfLf) :F−T

m = ff ∀X∈ΩF(0), (3.1)

Lf−GradvfF
−1
m =0 ∀X∈ΩF(0), (3.2)

F−T

m : Gradvf=0 ∀X∈ΩF(0), (3.3)

vf=gDf
∀X∈ΓDF

(0), (3.4)

(pfI−µfLf)F−T

m [nf]=gNf
∀X∈ΓNF

(0). (3.5)

3.1.2 Linear elastostatics formulation (mesh motion)

For mesh motion, a linear elastostatics formulation is used, with arbitrary (user defined)
material properties. The primary variables of displacement u (hybrid) and deformation
gradient F are chosen for their convenience in the ALE fluid formulation in FSI. With
these primary variables, linear elastostatics is governed by the steady form of the con-
servation of linear momentum, written in the Lagrangian reference frame, along with a
constitutive relation for deformation-gradient and appropriate boundary conditions:

−DivCm [Fm−I]= fm ∀X∈ΩF(0), (3.6)

Fm−I−Gradum=0 ∀X∈ΩF(0), (3.7)

um=gDm ∀X∈ΓDF
(0), (3.8)

(Cm [Fm−I])[nm]=gNm ∀X∈ΓNF
(0), (3.9)

where Cm is the elasticity tensor with arbitrary mesh material properties.

3.1.3 Nonlinear elastodynamics formulation

The (geometrically) nonlinear Saint Venant-Kirchhoff model was used in [3, 4] because
it was the model Turek and Hron used for their FSI benchmark [23], with which these
formulations are compared in Section 4. In [3,4] the primary variables were the displace-
ment u (hybrid), the velocity v (hybrid) and the Green-St. Venant strain E; however, in
this work, only the velocity is a hybrid variable, which requires changes to the governing
equations. First, the strong form from [3,4] is presented, which is analogous to the system
for linear elastostatics, but with an additional kinematic compatibility condition:

ρ
∂vs

∂t
−Div [FsCs(Es)]= fs ∀X∈ΩS , (3.10)

Es−
1
2

(
Gradus+(Gradus)

T+(Gradus)
TGradus

)
=0 ∀X∈ΩS , (3.11)

∂us

∂t
=vs ∀X∈ΩS , (3.12)

u=gDs ∀X∈ΓDS
, (3.13)

[FsCs(Es)][n]=gNs ∀X∈ΓNS
, (3.14)
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where Cs is the elasticity tensor for the solid’s material properties. The solid deformation
tensor Fs = I+Gradus is not a primary variable, but it is shown in the formulation for
brevity.

Having a two-hybrid-field formulation is not desirable for several reasons, with the
most important reason being that it increases the number of global DOFs, which is con-
trary to the entire point of the HDG method. At the time [3, 4] were written, no alterna-
tive to a two-hybrid-field solid formulation was thought possible; however that has since
changed. In order to write a one-hybrid-field solid formulation, Eq. (3.11) must be differ-
entiated with respect to time and Eq. (3.13) must be written in terms of velocity, resulting
in

∂Es

∂t
−Sym(Gradvs)+

1
2

[
(Gradvs)

TGradus+(Gradus)
TGradvs

]
=0 ∀X∈ΩS , (3.15)

v=gDs ∀X∈ΓDS
. (3.16)

No other changes to the strong form of the equations are necessary, but more changes
will be presented for both the FSI coupling and the weak forms of the solid and mesh
governing equations in the following sections.

3.2 FSI Coupling

To couple these three formulations together for monolithic FSI, the system requires three
conditions on the fluid-solid interface: the solid displacement governs the mesh displace-
ment, the solid and fluid velocity fields are continuous, and finally, the solid and fluid
tractions are continuous. For the HDG method, boundary (or interface) conditions need
to be applied to the solution trace (the global variables). This was the reason for the
two-hybrid-field solid formulation presented in [3, 4]. Those boundary conditions are
reproduced below, and then the modification for a one-hybrid-field solid formulation is
discussed:

(µm−µs)
∣∣∣
ΓFS

=0, (3.17)

(υs−υf)
∣∣∣
ΓFS

=0, (3.18)

(
T̂s [ns]+T̂f[nf]

)∣∣∣
ΓFS

=0, (3.19)

where µ, υ, and T̂ are the global components of the displacement, velocity and traction
respectively. The orientation of the fluid-solid interface ΓFS requires ns=−nf. Section 3.4
discusses how the global traction is approximated in terms of the other variables to re-
duce the number of global unknowns.

Unlike the velocity and traction conditions, which are two-way coupled, the solid-
mesh displacement condition (3.17) must be one-way coupled. The mesh should not di-
rectly influence the solid because the mesh is non-physical and its properties are arbitrary,
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otherwise the artificial mesh ‘stiffness’ would limit the motion of the solid. Therefore, the
solid-mesh displacement condition (3.17) must be added to the mesh governing equa-
tions on the interface, but not to the solid governing equations. Due to this restriction,
it is possible to rewrite Eq. (3.17) in terms of the global mesh displacement, but only the
local solid displacement:

(µm−us)
∣∣∣
ΓFS

=0, (3.20)

which is the entire reason a one-hybrid-field solid formulation is possible.

3.3 Function spaces

The discontinuous finite element approximation spaces for the discrete fluid, solid, and
mesh subproblems presented in [3, 4] were chosen from the spaces reproduced below.
The test functions are chosen from the same respective spaces as the discretized primary
variables, except for those with Dirichlet boundary conditions. These spaces, as with all
the basis functions in this document, are indicated with a tilde.

U
h
m,s :=

{
uh

m,s∈
[

L2
(
T h

f,s

)]d
: uh

m,s

∣∣∣
K
∈ [Pk (K)]d , ∀K∈T h

f,s

}
,

V
h
f,s :=

{
vh

f,s∈
[

L2
(
T h

f,s

)]d
: vh

f,s

∣∣∣
K
∈ [Pk(K)]d , ∀K∈T h

f,s

}
,

E
h
s :=

{
Eh

s ∈
[

L2
(
T h

s

)]d×d
: Eh

s

∣∣∣
K
∈ [Pk (K)]d×d , ∀K∈T h

s

}
,

F
h
m :=

{
Fh

m∈
[

L2
(
T h

f

)]d×d
: Fh

m

∣∣∣
K
∈ [Pk(K)]d×d , ∀K∈T h

f

}
,

L
h
f :=

{
Lh

f ∈
[

L2
(
T h

f

)]d×d
: Lh

f

∣∣∣
K
∈ [Pk(K)]d×d , ∀K∈T h

f

}
,

Ph
f :=

{
ph

f ∈L2
(
T h

f

)
: ph

f

∣∣∣
K
∈Pk (K), ∀K∈T h

f

}
, (3.21)

M
h
m,s :=

{
µ

h
m,s∈

[
L2
(
Fh

f,s

)]d
: µ

h
m,s

∣∣∣
F
∈ [Pk(F)]d , ∀F∈Fh

f,s,µ
h
m,s

∣∣
∂ΩDf,s

=gDm,s

}
,

M̃m,s :=

{
µ̃m,s∈

[
L2
(
Fh

f,s

)]d
: µ̃m,s|F ∈ [Pk(F)]d , ∀F∈Fh

f,s,µ̃m,s

∣∣
∂ΩDf,s

=0

}
,

V
h
f,s :=

{
υ

h
f,s∈

[
L2
(
Fh

f,s

)]d
: υ

h
f,s

∣∣∣
F
∈ [Pk(F)]d , ∀F∈Fh

f,s,υh
f

∣∣
∂ΩDf

=gDf

}
,

Ṽ f,s :=

{
υ̃f,s∈

[
L2
(
Fh

f,s

)]d
: υ̃f,s|F ∈ [Pk(F)]d , ∀F∈Fh

f,s,υ̃f,s

∣∣
∂ΩDf,s

=0

}
,

Ψh
f :=

{
ψh

f ∈L2
(
T h

f

)
: ψh

f

∣∣∣
K
∈P0(K), ∀K∈T h

f

}
,

where F h is the set of all faces, for all elements in T h. In order to reduce the number
of total DOFs (both local and global), the basis and test functions for the mesh variables
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are restricted to only linear polynomials. Additionally, because of the changes made in
Eq. (3.16), the space for the global velocity must now include a Dirichlet condition for the
solid. These new spaces are presented below, and they replace the respective spaces from
Eq. (3.21) for the new reduced DOF formulation.

U
1
m :=

{
uh

m∈
[

L2
(
T h

f

)]d
: uh

m

∣∣∣
K
∈ [P1(K)]d , ∀K∈T h

f

}
,

F
1
m :=

{
Fh

m∈
[

L2
(
T h

f

)]d×d
: Fh

m

∣∣∣
K
∈ [P1(K)]d×d , ∀K∈T h

f

}
,

M
1
m :=

{
µ

h
m ∈

[
L2
(
Fh

f

)]d
: µ

h
m

∣∣∣
F
∈ [P1(F)]d , ∀F∈Fh

f ,µh
m

∣∣
∂ΩDf

=gDm

}
, (3.22)

M̃
1
m :=

{
µ̃m ∈

[
L2
(
Fh

f

)]d
: µ̃m|F ∈ [P1(F)]d , ∀F∈Fh

f ,µ̃m

∣∣
∂ΩDf

=0

}
,

V
h
f,s :=

{
υ

h
f,s∈

[
L2
(
Fh

f,s

)]d
: υ

h
f,s

∣∣∣
F
∈ [Pk(F)]d , ∀F∈Fh

f,s,υ
h
f,s

∣∣
∂ΩDf,s

=gDf,s

}
.

The restrictions from the mesh function space result in a variable local and global fluid
domain DOF reduction up to approximately 50% for high-order problems. This is de-
monstrated in Appendix A. The accuracy of the solution is not affected by restricting the
mesh function spaces to linear polynomials because the mesh is a non-physical construct
used solely for the ALE transformation. The mesh only has two requirements: that it
satisfies all the boundary conditions† and that is sufficiently smooth. Linear polynomials
meet both of these requirements, and so using higher-order polynomials is wasteful in
terms of computational resources. In fact, as is discussed later, the only other side effect
of the restricted mesh function spaces appears to be increased stability. The numerical
studies for this work using linear function spaces for the mesh variables had a more
stable solution than those with equal-order mesh function spaces.

3.4 HDG discretization for FSI sub-problems

The HDG discretization procedure for the three sets of governing equations from Sec-
tion 3.1 is presented in full in [3,4]. In this section, the final HDG formulations are repro-
duced along with a discussion of the differences pertaining to the one-hybrid-field solid
formulation.

3.4.1 Fluid

The fluid governing equations are entirely unchanged from [3, 4]. The discretized pri-
mary variables for the ALE Navier-Stokes formulation are the velocity-gradient Lh

f , the
velocity vh

f , the pressure ph
f , the trace of the velocity over the element faces υh

f , and the

†For a complex fluid-solid interface, it may be desirable to use equal-order mesh function spaces specif-
ically on the interface to preserve displacement continuity between the solid and mesh. This should
not substantially increase the number overall DOFs, but is worth noting.
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mean pressure over each element ψh
f . Each has an associated test function: L̃f, ṽf, p̃f, υ̃f,

and ψ̃f. Discretizing Eqs. (3.1), (3.2) and (3.3), weighting by appropriate test functions,
and then integrating by parts over a cell yields the local weak form of the ALE Navier-
Stokes equations defined over a cell. The full derivation is omitted here (See [3, 4]), but
the resultant HDG ALE Navier-Stokes fluid problem is:

Problem 1 (Fluid sub-problem).

Find {Lh
f ,vh

f ,ph
f ,υh

f ,ψh
f }∈L

h
f ×V

h
f ×Ph

f ×V
h
f ×Ψh

f such that
(

ṽf,ρf Jm
∂vh

f

∂t

)

Kf

+
(

ṽf,ρf JmLh
f

[
vh

f −vh
m

])
Kf

+
(

ṽf, JmF−T

m

[
Grad pk

f

])
Kf

+
(

Gradṽf,µf JmLh
f F−T

m

)
Kf

+
〈

ṽf,T̂[n]∗f

〉
∂Kf

=(ṽf, Jmff)Kf
,

(
L̃f, JmLh

f

)
Kf

−
(

L̃f, JmGradvh
f F−1

m

)
Kf

+
〈

L̃fF
−T

m [nf], Jm

(
vh

f −υ
h
f

)〉
∂Kf

=0,

−
(

F−T

m

[
Grad p̃k

f

]
, Jmvh

f

)
Kf

+
〈

F−T

m [nf] p̃
k
f , Jmυ

h
f

〉
∂Kf

=0,
〈

υ̃f,T̂[n]f

〉
∂T h

f \ΓFSI

+
〈

υ̃f,T̂[n]f+T̂[n]s

〉
ΓFSI

+
〈

υ̃f,Sf

(
υ

h
f −υ

h
s

)〉
ΓFSI

= 〈υ̃f, JmgNf
〉

ΓN
,

〈
ψ̃f, JmF−T

m [nf]·υ
h
f

〉
∂T h

f

=0,

(
p̃0

f , Jm p0
f

)
T h

f
=0,

∀{L̃f,ṽf, p̃f,υ̃f,ψ̃f}∈L
h
f ×V

h
f ×Ph

f ×Ṽ f×Ψh
f ,

where

p0
f +pk

f = ph
f ,

T̂[n]∗f :=−µf JmLh
f F−T

m [nf]+Sf

(
vh

f −υ
h
f

)
,

T̂[n]f := Jm

[
−µfL

h
f +
(

pk
f +ψh

f

)
I
]

F−T

m [nf]+Sf

(
vh

f −υ
h
f

)
,

Sf :=

(
µf

lf
+ρf

∣∣∣vh
f

∣∣∣
L2

)
I.

It is worth noting that the pressure was decomposed by

ph
f := p0

f +pk
f , s.t. Grad p0

f =0, &
∫

V
pk

f dV=0, (3.23)

where p0
f and pk

f are from the following spaces:

Q0 :=
{

p0
f ∈L2

(
T h
)

: p0
f

∣∣
K
∈P0(K), ∀K∈T h

}
, (3.24)

Qk :=Qh
∖

Q0 .
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Also, to minimize the number of global DOFs, approximations of the velocity-gradient
trace and pressure trace from the traction T̂ were defined in terms of the other variables
and a stabilization parameter S and a characteristic length scale l. This is also done for
the solid and mesh formulations.

3.4.2 Solid

The solid governing equations are where the major differences in formulation occur. Be-
low, the two-hybrid-field formulation from [3,4] is reproduced, followed by the new one-
hybrid-field formulation. The discretized primary variables for solid formulation are the
Green-St. Venant strain Eh

s , the displacement uh
s , the velocity vh

s , the trace of the displace-
ment over the element faces µh

s (only in the old two-hybrid-field formulation), and the
trace of the velocity over the element faces υh

s . Each has an associated test function: Ẽs,
ũs, ṽs, µ̃s, and υ̃s. For the two-hybrid-field formulation, an added constraint is necessary
that specifies that the global displacement equals the local displacement on the element
faces. This constraint is not necessary in the new one-hybrid-field formulation.

Problem 2 (Two-hybrid-field solid sub-problem).

Find {uh
s ,vh

s ,Eh
s ,µh

s ,υh
s }∈U

h
s ×V

h
s ×E

h
s ×M

h
s ×V

h
s , such that

(
ṽs,ρ

∂vh
s

∂t

)

Ks

+
(

Gradṽs,FsCs

(
Eh

s

))
Ks

+
〈

ṽs,T̂[n]s

〉
∂Ks

=(ṽs,fs)Ks
,

(
Ẽs,E

h
s

)
Ks

−
(

Sym(Ẽ)s,Graduh
s

)
Ks

−
(

1
2 Ẽs,

(
Graduh

s

)
T

Graduh
s

)
Ks

+
〈

Sym(Ẽ)sn,
(

uh
s −µ

h
s

)〉
∂Ks

=0,

(
ũs,

∂uh
s

∂t

)

Ks

−
(

ũs,v
h
s

)
Ks

=0,

〈
µ̃s,uh

s

〉
∂Ks

−
〈

µ̃s,µh
s

〉
∂Ks

=0,
〈

υ̃s,T̂[n]s

〉
∂T h

s \ΓFSI

+
〈

υ̃s,T̂[n]s+T̂[n]f

〉
ΓFSI

+
〈

υ̃s,Ss

(
υ

h
s −υ

h
f

)〉
ΓFSI

= 〈υ̃s,gNs〉ΓNs
,

∀{ũs,ṽs,Ẽs,µ̃s,υ̃s}∈U
h×V

h
s ×E

h
s ×M̃s×V

h
s ,

where

Fs= I+Graduh
s ,

T̂[n]s :=−
[
FsCs

(
Eh

s

)]
ns+Ss

(
vh

s −υ
h
s

)
,

Ss :=
µs

ls
I.
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Problem 3 (One-hybrid-field solid sub-problem).

Find {uh
s ,vh

s ,Eh
s ,υh

s }∈U
h
s ×V

h
s ×E

h
s ×V

h
s , such that

(
ṽs,ρ

∂vh
s

∂t

)

Ks

+
(

Gradṽs,FsCs

(
Eh

s

))
Ks

+
〈

ṽs,T̂[n]s

〉
∂Ks

=(ṽs,fs)Ks
,

(
Ẽs,

∂Eh
s

∂t

)

Ks

−
(

Sym(Ẽ)s,Gradvh
s

)
Ks

−
(

1
2 Ẽs,

(
Gradvh

s

)
T

Graduh
s

)
Ks

−
(

1
2 Ẽs,

(
Graduh

s

)
T

Gradvh
s

)
Ks

+
〈

Sym(Ẽ)sn,
(

vh
s −υ

h
s

)〉
∂Ks

=0,

(
ũs,

∂uh
s

∂t

)

Ks

−
(

ũs,v
h
s

)
Ks

=0,

〈
υ̃s,T̂[n]s

〉
∂T h

s \ΓFSI

+
〈

υ̃s,T̂[n]s+T̂[n]f

〉
ΓFSI

+
〈

υ̃s,Ss

(
υ

h
s −υ

h
f

)〉
ΓFSI

= 〈υ̃s,gNs〉ΓNs
,

∀{ũs,ṽs,Ẽs,υ̃s}∈U
h×V

h
s ×E

h
s ×V

h
s ,

where

Fs= I+Graduh
s ,

T̂[n]s :=−
[
FsCs

(
Eh

s

)]
ns+Ss

(
vh

s −υ
h
s

)
,

Ss :=
µs

ls
I.

3.4.3 Mesh

Finally, the mesh governing equations are presented in almost exactly the same form as
they were in [3,4], with the exception of the change to the solid-mesh displacement condi-
tion from Eq. (3.20) and the restricted function spaces from Eq. (3.22). The discretized pri-
mary variables for mesh formulation are the deformation-gradient Fh

m, the displacement
uh

m, and the trace of the displacement over the element faces µh
m. Each has an associated

test function: F̃m, ũm, and µ̃m.

Problem 4 (Mesh sub-problem).
Find {uh

m,Fh
m,µh

m}∈U
1
m×F

1
m×M

1
m such that

(
Gradũm,Cm

(
Fh

m

))
K
−
〈

ũm,T̂[n]m

〉
∂K
=(Gradũm,Cm(I))K−〈ũm,Cm(I)nm〉∂K+(ũm,f)K ,

(
F̃m,Fh

m

)
K
−
(

F̃m,Graduh
m

)
K
+
〈

F̃mnm,
(

uh
m−µ

h
m

)〉
∂K

=
(

F̃m,I
)

K
,

〈
µ̃m,T̂[n]m

〉
∂T h

m\ΓFSI

+
〈

µ̃m,µh
m−uh

s

〉
ΓFSI

= 〈µ̃m,Cm(I)nm〉∂T h
m\ΓFSI

+〈µ̃m,gN〉∂ΩN
,

∀{ũm,F̃m,µ̃m}∈U
1
m×F

1
m×M̃

1
m,
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where

T̂[n]m :=Cm

(
Fh

m

)
nm−Sm

(
uh

m−µ
h
m

)
,

Sm :=
µm

lm
I.

3.5 Monolithic fluid-structure interaction

The global FSI problem is a direct sum of Problems 1, 3, and 4 with coupling conditions.

Problem 5 (Global FSI problem).

Find {Lh
f ,vh

f ,ph
f ,υh

f ,ψh
f }∈L

h
f ×V

h
f ×Ph

f ×V
h
f ×Ψh

f , {uh
s ,vh

s ,Eh
s ,υh

s }∈U
h
s ×V

h
s ×E

h
s ×V

h
s , and

{uh
m,Fh

m,µh
m}∈U

1
m×F

1
m×M

1
m such that Problems 1, 3, and 4 are simultaneously satisfied.

The globally defined system in Problem 5 is a fully coupled nonlinear system of equa-
tions. The Newton-Raphson procedure [24] is employed to solve these nonlinear equa-
tions.

4 Numerical results

Code-to-code comparison is considered against the benchmark given in [23] by Turek and
Hron, with domain detailed in Fig. 1. All dimensions and properties used are from [23]
for case “FSI2” and are reproduced in Table 1. The FSI benchmark simulates two-dimensi-
onal incompressible channel flow around a rigid cylinder with an attached nonlinearly
elastic flag. The wake shed from the cylinder produces oscillations in the flag that self-
excite and eventually reach a stationary oscillatory state. The initial conditions are zero

Figure 1: The domain used for the FSI benchmark proposed by [23]. The benchmark simulates two-dimensional
channel flow over a rigid cylinder with a flexible flag attached.
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Figure 2: A diagram of the (undeformed) mesh used for the HDG FSI simulation of the Turek and Hron
benchmark [23]. There are 4217 fluid cells, indicated in black, and 147 solid cells, indicated in red.

Table 1: Turek and Hron [23] benchmark domain dimensions and material properties.

Parameter Symbol Value [m] Property Value

Channel length L 2.5 ρs [
kg

m3 ] 10000

Channel height H 0.41 νs 0.4

Cylinder center C (0.2, 0.2) Es [E6
kg

ms2 ] 5.6

Cylinder radius r 0.05 ρf [
kg
m3 ] 1000

Flag length l 0.35 µf [
kg
ms ] 1

Flag height h 0.02 Ū [ m
s ] 1

Reference point A (0.6, 0.2)

Reference point B (0.15, 0.2) vf|in [ m
s ] 1.5Ū

y(H−y)
(H/2)2

everywhere and the inlet velocity smoothly increases to vf|in over the first two seconds.
After the first two seconds, the inlet velocity is constant. The top and bottom boundaries
of the channel are subject to the no-slip condition, as is the perimeter of the rigid cylinder.
The flag, attached to the cylinder, is allowed to move freely with the fluid flow, subject
to the interface conditions specified in Eqs. (3.18), (3.19), and (3.20). The BDF2 timestep-
ping method is used with a timestep size ∆t=0.0025 for all of the results in this section.
The HDG FSI model and subproblems were implemented utilizing the deal.II finite el-
ement library [25, 26]. The mesh used for all the results in this section is presented in
Fig. 2, which contains 4364 cells combined between the solid and fluid. Turek and Hron
provided tip displacement data for point A, from Fig. 1, and the drag and lift calculated
about the perimeter of the cylinder and attached flag. Fig. 3 contains plots for each of
these metrics, with a comparison between the results from [3,4], labeled “Old HDG FSI”,
the results from the reduced DOF formulation presented in this work, labeled “Reduced
DOF HDG FSI”, and the results from Turek and Hron’s benchmark [23], labeled “Turek
FSI”. As can be seen in the figure, the results from [3, 4] and this work are indistinguish-
able from each other and, while there remains some discrepancy‡ between both sets of

‡We expect the discrepancy between the HDG FSI2 results and the Turek and Hron FSI2 results is caused by
the choice of stabilization tensor S for the system, as is discussed in more detail in [3, 4]. HDG stabilization
for multi-physics systems is mostly unexplored in the literature and currently poorly understood. It remains
an important area of future work.
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Figure 3: Comparison of x- and y-displacement at point A from Fig. 1, and of drag and lift calculated about
the perimeter of the cylinder and flag from Fig. 1, between Turek and Hron’s FSI benchmark [23] and HDG
results, over a period of stationary oscillation. The HDG results were calculated using Q2 elements and the
BDF2 timestepping method. The points indicated on the data in these plots hold no physical significance and
are only present to distinguish the data when they overlap.

HDG results and the Turek and Hron results, the important fact is that the new reduced
DOF formulation documented in this work did not negatively impact the accuracy of
the solution at all compared to the previous formulation, while substantially decreasing
number of DOFs required for the calculation.

Table 2 lists the number of DOFs required by both the old and new HDG FSI formu-
lations for the presented FSI2 results, as well as the percent reduction of DOFs with the
formulation from this work over the old formulation. There is a total global DOF reduc-
tion of 17% and total local DOF reduction of 25%. This directly translates to improved
computational efficiency, especially due to the global DOF reduction. It is worth noting
that the solid global DOF reduction is 50%, so a problem with a larger solid domain rel-
ative to the fluid domain would experience even greater improvement in computational
efficiency. Additionally, the case presented uses only quadratic tensor-product polyno-
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Table 2: The number of DOFs for the solid domain and the fluid domain, for both the formulation from [3,4]
and this work’s. The fluid and mesh DOFs are both included in the fluid domain. The third set of columns
shows the percent DOF reduction with the formulation presented in this work versus that from [3,4].

Old HDG FSI Reduced DOF HDG FSI Percent DOF reduction

Global DOFs Local DOFs Global DOFs Local DOFs Global DOFs Local DOFs

Fluid 108125 493389 90807 366879 16% 26%

Solid 4152 10584 2076 10584 50% 0%

Total 112277 503973 92883 377463 17% 25%

mial elements (Q2-elements). For higher order elements, there will be a substantially
increased DOF reduction (both locally and globally) due to the restriction of the mesh
function spaces to only linear polynomials, as shown in Appendix A. Also, the fluid do-
main values from Table 2 directly agree with the arbitrary values from Table 4 for d=k=2.

In performing this numerical analysis, an additional, unexpected, benefit to the re-
stricted mesh function spaces was discovered. The linear function spaces produced high-
er quality meshes and increased the stability of the system under large deformations
compared to the equal-order mesh formulation. Problems with moving domains, such
as FSI with the ALE Navier-Stokes equations, often suffer from not maintaining high
mesh quality over time. If a mesh’s quality becomes so poor§ that it contains a negative
volume, linear algebra solvers will be unable to produce a solution, resulting in a failed
simulation. In this work, for this specific benchmark, the mesh’s material parameters are
defined to make it radially less stiff outward from the tip of the flag. This disperses the
mesh deformation throughout the mesh domain instead of localizing it about the FSI in-
terface. With the linear mesh functions spaces cell quality was preserved at a higher level
throughout the domain better than with the equal-order mesh function spaces.

4.1 Per-Element DOF-Reduction

The primary result from this work is the reduction in the DOFs per cell and face achieved
while still maintaining the accuracy of the solution compared to the old method. The
code-to-code comparison presented in the previous section demonstrates that the solu-
tion obtained by the new, less computationally expensive, method successfully predicts
the Turek-Hron benchmark solution to the same accuracy as the old, more computation-
ally expensive, method. In this section, a quantitative reduction in the number of DOFs
per cell and cell face, for two and three dimensional elements, for polynomial orders
k=1-10 are given.

Table 3 gives the number of DOFs for a fluid-ALE domain cell and cell face, computed
by adapting the equations for the global number of unknowns given in Appendix A. In

§A poor quality mesh satisfies its boundary conditions but contains cells that are extremely distorted, such
as cells with nearly parallel adjacent sides.
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Table 3: Local DOFs for the fluid problem versus polynomial order and dimension. The new formulation results
in a significant reduction in the number of DOFs.

Local DOFs Per Fluid Cell

Dimension 2 3

OLD NEW Reduction OLD NEW Reduction

Order (k)

1 52 52 0.00 % 200 200 0.00%

2 117 87 25.64% 675 447 33.78%

3 208 136 34.62% 1600 928 42.00%

4 325 199 38.77% 3125 1721 44.93%

5 468 276 41.03% 5400 2904 46.22%

6 637 367 42.39% 8575 4555 46.88%

7 832 472 43.27% 12800 6752 47.25%

8 1053 591 43.87% 18225 9573 47.47%

9 1300 724 44.31% 25000 13096 47.62%

10 1573 871 44.63% 33275 17399 47.71%

Global DOFs Per Fluid Face

Dimension 2 3

OLD NEW Reduction OLD NEW Reduction

Order (k)

1 8 8 0.00 % 24 24 0.00 %

2 12 10 16.67% 54 39 27.78%

3 16 12 25.00% 96 60 37.50%

4 20 14 30.00% 150 87 42.00%

5 24 16 33.33% 216 120 44.44%

6 28 18 35.71% 294 159 45.92%

7 32 20 37.50% 384 204 46.88%

8 36 22 38.89% 486 255 47.53%

9 40 24 40.00% 600 312 48.00%

10 44 26 40.91% 726 375 48.35%

each case, the number of DOFs is seen to reduce in both two and three dimensions as the
finite element polynomial order k is increased. The effect of reformulating the problem
is more pronounced in three dimensions then in two, indicating that more complex three
dimensional applications stand to gain significantly improved efficiency by using the
new formulation.

The solid domain (elasticity) formulation has no reduction in the number of local
per-cell DOFs, but does see a 50% reduction in the number of global DOFs, simply by
removing one the global fields in the new formulation presented in this work.
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5 Conclusion

This work presents a hybridizable discontinuous Galerkin finite element formulation for
fluid structure interaction with substantially improved computational efficiency, in terms
of a significant reduction in the number of global and local DOFs per cell, compared
to the original HDG FSI formulation developed by Sheldon et al. [3, 4]. The resulting
linearized system is smaller and does not increase the number of non-zeros for retained
DOFs. Furthermore, the stability and accuracy of proposed formulation appear to be the
same as the previous HDG FSI formulation.

The new formulation is shown to approach a 50% reduction in global DOF count for
high-order simulations for an arbitrary FSI problem. For the specific numerical example
of the Turek and Hron benchmark using only Q2 elements, the new formulation is shown
to match the results of the original formulation with a negligible change in accuracy,
while the number of total global DOFs is reduced by 17% and the number of total local
DOFs is reduced by 25%. This work will form the basis for future studies, namely an
empirical efficiency study to determine the efficiency of this method when applied to
large problems.
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Appendix A: Fluid domain DOF reduction

This appendix demonstrates the fluid domain DOF reduction of the HDG FSI formula-
tion presented in this work over the HDG FSI formulation previously presented in [3, 4].
These formulations are respectively referred to as “new” and “old” for brevity in the
remainder of this appendix. Lagrange polynomials are used as basis functions in this
example, but the concept extends to other basis functions with similar results. In the
following equations and table, the variables d = dimension, k = polynomial order, f =
unique faces in the fluid domain¶, and c= cells in the fluid domain.

The number of fluid domain DOFs for an arbitrary HDG FSI are presented below for
both the old and new formulations, along with the DOF reduction of the new formulation
over the old.

¶The fluid domain includes both the fluid and mesh DOFs, even though only the mesh DOFs are reduced
by the new formulation.
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Local DOFs with old formulation: Nlo = c(2d2+2d+1)(k+1)d .

Local DOFs with new formulation: Nln = c((k+1)d+(d2+d)((k+1)d+2d)).

Global DOFs with old formulation: Ngo =2 f d(k+1)d−1+c.

Global DOFs with new formulation: Ngn = f d((k+1)d−1+2d−1)+c.

Local DOF reduction from old to new: Rl =1−
Nln

Nlo
=

(
d2+d

)(
1−2d (k+1)−d

)

2d2+2d+1
.

Global DOF reduction from old to new: Rg=1−
Ngn

Ngo
=

1

2
−

(k+1)
(
c+2dd f

)

2
(

ck+c+2d f (k+1)d
) .

Applying this to specific values of d and k yields the results in Table 4, which show that
as polynomial order increases, the local and global percent DOF reduction of the new
formulation over the old approaches approximately 50%.

Table 4: The fluid domain DOF reduction from the new HDG FSI formulation over the old formulation; f = cd
for the finite Rg values. The limit as k→∞ is exact.

k=2 k=3 k=4 k=5 limk→∞

Rl for d=2 25.64% 34.62% 38.77% 41.03% 46.15%

Rl for d=3 33.78% 42.00% 44.93% 46.22% 48.00%

Rg for d=2 16.00% 24.24% 29.27% 32.65% 50.00%

Rg for d=3 27.61% 37.37% 41.91% 44.38% 50.00%
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