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Abstract. We describe an operator splitting technique based on physics rather than
on dimension for the numerical solution of a nonlinear system of partial differential
equations which models three-phase flow through heterogeneous porous media. The
model for three-phase flow considered in this work takes into account capillary forces,
general relations for the relative permeability functions and variable porosity and per-
meability fields. In our numerical procedure a high resolution, nonoscillatory, second
order, conservative central difference scheme is used for the approximation of the non-
linear system of hyperbolic conservation laws modeling the convective transport of the
fluid phases. This scheme is combined with locally conservative mixed finite elements
for the numerical solution of the parabolic and elliptic problems associated with the
diffusive transport of fluid phases and the pressure-velocity problem. This numerical
procedure has been used to investigate the existence and stability of nonclassical shock
waves (called transitional or undercompressive shock waves) in two-dimensional het-
erogeneous flows, thereby extending previous results for one-dimensional flow prob-
lems. Numerical experiments indicate that the operator splitting technique discussed
here leads to computational efficiency and accurate numerical results.
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1 Introduction

The study of operator splitting techniques has a long history and has been pursued
with various methods. Since alternating-direction methods were introduced by Douglas,
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Peaceman and Rachford [1–5] and fractional step methods by D’jakonov, Marchuk and
Yanenko [6, 7], these procedures, which reduce the time-stepping of multidimensional
problems to locally one-dimensional computations, have been applied in the numerical
simulation of many physically important problems, including reservoir flow problems,
particularly in the case of single and two-phase flows. Here, the operator splitting is
based on separating the underlying physical processes and treating each such process
appropriately; thus, instead of solving the governing differential equations in the form
which results directly from the basic conservation laws (supplemented by constitutive
relations), the system of equations will be rewritten in such a way as to exhibit clearly
each physical process. Then, distinct, appropriate numerical techniques can be orches-
trated within an operator-splitting formulation to furnish effective and efficient numeri-
cal procedures designed to resolve the sharp gradients and dynamics evolving at vastly
different rates which are the hallmarks of reservoir flow problems.

We present an operator splitting technique for the numerical solution of a highly non-
linear system of differential equations modeling three-phase flow through heterogeneous
porous media. Three-phase flow in porous media is important in a number of scientific
and technological contexts, including enhanced oil recovery [8–14], geological CO2 se-
questration [15], and radionuclide migration from repositories of nuclear waste [16, 17].

We consider the governing system of equations written in terms of the oil pressure
(see, e.g., [18,19]); this formulation allows us to identify a subsystem of nonlinear hyper-
bolic conservation laws (associated with convective transport), a parabolic subsystem of
equations (associated with diffusive transport), and a elliptic subsystem (associated with
the pressure-velocity calculation). Our splitting procedure solves the elliptic, hyperbolic,
and parabolic subsystems sequentially, using numerical methods specifically tailored to
such types of partial differential equations. We remark that it would have been very
difficult, if not impossible, to employ such state-of-the-art numerical schemes had we
attempted to solve the original system by standard implicit procedures. Moreover, any
implicit procedure would require considerably more expensive computations since large
linear and nonlinear problems, which do not appear in the splitting scheme, would have
to be treated. Our splitting technique allows time steps for the pressure-velocity calcula-
tion that are longer than those for the diffusive calculation, which, in turn, can be longer
than those for convection.

For three-phase flow, distinct empirical models have been proposed for the relative
permeability functions [20–22], and more recently [23]. In addition, it is well known that
for some of these models [20–22], which have been used extensively in petroleum engi-
neering, the 2×2 system of conservation laws (the saturation equations) that arises when
capillarity (diffusive) effects are neglected fails to be strictly hyperbolic somewhere in
the interior of the saturation triangle (the phase space). This loss of strict hyperbolic-
ity frequently leads to the occurrence of nonclassical shock waves (called transitional or
undercompressive shock waves) in the solutions of the three-phase flow model. Crucial
to calculating transitional shock waves is the correct modeling of capillarity effects [24].
Thus, their accurate computation constitutes a bona fide test for numerical simulators.


