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Abstract. The complete analytical solution of the Riemann problem for the homo-
geneous Dispersive Nonlinear Shallow Water Equations [Antuono, Liapidevskii and
Brocchini, Stud. Appl. Math., 122 (2009), pp. 1-28] is presented, for both wet-bed and
dry-bed conditions. Moreover, such a set of hyperbolic and dispersive depth-averaged
equations shows an interesting resonance phenomenon in the wave pattern of the solu-
tion and we define conditions for the occurrence of resonance and present an algorithm
to capture it. As an indirect check on the analytical solution we have carried out a de-
tailed comparison with the numerical solution of the government equations obtained
from a dissipative method that does not make explicit use of the solution of the local
Riemann problem.
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1 Introduction: The Dispersive Nonlinear Shallow Water

Equations

The most popular approximate model equations for studying nearshore hydrodynam-
ics are the Nonlinear Shallow Water Equations (NSWE) and many available Boussinesq
type equations (BTEs), which all stem from the work of Peregrine [12]. BTEs are capa-
ble to model dispersive effects and are valid throughout a wide portion of the nearshore
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zone, but they cannot directly account for wave breaking and they cannot intrinsically
predict the motion or the position of the shoreline [3]. On the contrary, the classical Non-
linear Shallow Water Equations allow for a simple treatment of wave breaking and of
the shoreline motion, but they cannot model dispersive effects and their validity is lim-
ited to a narrow area close to the shore. In order to combine the advantages of these
models, Antuono, Liapidevskii and Brocchini [1] proposed a new set of depth-averaged
equations, called Dispersive Nonlinear Shallow Water Equations (DNSWE), which are
dispersive and hyperbolic at the same time. These equations, obtained by using a hy-
perbolic approximation of a chosen set of nonlinear and weakly-dispersive Boussinesq-
type equations, provide both a physically sound description of the nearshore dynamics
and a complete representation of dispersive and nonlinear wave phenomena. A detailed
description of the conditioning of the dispersive terms and of the related hyperbolic ap-
proximation can be found in Antuono, Liapidevskii & Brocchini [1]. Here, a complete
description of the main advantages of the DNSWE is also given.

The 1D set of dimensional DNSWE can be written in the following conservative form:
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where Q=ud is the flow rate, A is a positive dimensional parameter ([A]=T−2) generally
set to 1s−2, γ is a positive dimensionless parameter (γ≪1) and φ and ψ are two potential
functions. As shown in Fig. 1, h is the still water level, u is the onshore velocity and d is
the total water depth.
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Figure 1: The reference frame of the DNSWE.


