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Abstract. Thermochronometer data offer a powerful tool for quantifying a wide range
of geologic processes, such as the deformation and erosion of mountain ranges, topo-
graphic evolution, and hydrocarbon maturation. With increasing interest to quantify
a wider range of complicated geologic processes, more sophisticated techniques are
needed. This paper is concerned with an inverse problem method for interpreting the
thermochronometer data quantitatively. Two novel models are proposed to simulate
the crustal thermal fields and paleo mountain topography as a function of tectonic and
surface processes. One is a heat transport model that describes the change of temper-
ature of rocks; while the other is surface process model which explains the change of
mountain topography. New computational algorithms are presented for solving the
inverse problem of the coupled system of these two models. The model successfully
provides a new tool for reconstructing the kinematic and the topographic history of
mountains.
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1 Introduction

In recent year, there has been growing interest in developing suitable numerical meth-
ods for studying geologic processes. A number of studies have been conducted demon-
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strating how numerical modeling can improve the interpretation of geologic data, for
example [3, 9, 13, 14, 17, 21]. Apatite (U-Th)/He thermochronometry has emerged as an
important tool for quantifying the cooling history of rocks as they pass through the up-
per 1-3 km of the crust. The low closure temperature (∼60◦C) of this thermochronometer
system has attracted interdisciplinary studies in the Earth science, such as for landform
evolution, structural geology, geomorphology, geochemistry, petrology, and geodynam-
ics [2, 7, 8, 22]. In general, thermochronometer data may be interpreted by measuring an
age (or other related observables such as fission track lengths or noble gas release) from
minerals extracted from rocks at or near the earth’s surface. A thermonometer cooling age
represents the time since a rock cooled below some effective closure temperature. These
ages are influenced by either some events or geologic processes (e.g., erosion, faulting,
topographic change, cooling of igneous rocks). In the latter case, which is closely related
to our work in this paper, efforts are made to interpret the thermochronometer data to
quantify the deformation, erosion, and topographic history of active mountain ranges.
More specifically, we present in this paper a novel coupling of topographic evolution
and 3D thermal models with inverse problem theory to reconstruct geologic processes.
For thermal convection, the physical process is governed by

ρc

(

∂T

∂t
+v·∇T

)

=∇·(k1∇T)+ρH. (1.1)

Explanation of each of the terms and parameters will be given later. This equation is
a classic heat equation defined on the three dimensional region with moving bound-
ary, considering heat advection, diffusion and radiogenic effect. We also impose suitable
boundary conditions based on the underlying physics and geologic setting. For surface
process, we have another classic heat type equation, considering transportation by a sur-
face velocity field, diffusivity of hillslope materials, and fluvial processes,

∂S

∂t
=∇·(k2∇S)+u·∇S+u3+a

√

Qd·∇S. (1.2)

In this study, we do not include glacier erosion in the model because the governing equa-
tions are highly nonlinear problem and the evolution of mountain topography in many
places can be described to a first order by Eq. (1.2). Our future work will focus on address-
ing glacial erosion. In Eq. (1.2), v=(vx,vy,vz) is the velocity, u=(vx,vy) and u3 = vz. For
the inverse problem, the velocity v and surface S(t,x,y) are the unknowns, which need to
be reconstructed. The solution of the surface model serves as the moving boundary of the
heat process. In our algorithm, we restore the velocity field by solving the inverse heat
process model, and apply it as known to the surface model to obtain the initial surface
by solving another inverse problem. This is carried out in an iterative fashion. To deal
with the inverse problem entangled with a moving boundary, we freeze the boundary
for a relatively short time period, by assuming that the mountain range does not change
significantly in one thousand years.


