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Abstract. Let S : X → X be a nonsingular transformation such that the correspond-

ing Frobenius-Perron operator PS : L1(X ) → L1(X ) has a stationary density f ∗. We

propose a maximum-entropy method based on a meshfree approach to the numerical

recovery of f ∗. Numerical experiments show that this approach is more accurate than

the maximum-entropy method based on piecewise linear functions, provided that the

moments involved are known. Moreover, it has a smaller computational cost than the

method mentioned.
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1. Introduction

Many problems in science and engineering are related to the asymptotic properties of

discrete dynamical systems. In particular, the evolution of density functions generated by

the discrete dynamical systems has a special importance.

The maximum-entropy method proposed by Jaynes [10] found various applications in

computing invariant measures [7, 8], calculation of Lyapunov exponents of chaotic map-

pings [9] and solving Fredholm integral equations [11, 13]. The traditional maximum-

entropy method uses standard monomials 1, x , x2, . . . , xn as moment functions and leads

to highly ill-conditioned nonlinear equations, which are difficult to solve. The number of

the moments is thus restricted. Recently, Ding et al. [8] proposed a maximum-entropy

method based on piecewise linear basis functions. The method overcomes the shortcoming

of ill conditioning. Theoretical analysis and numerical results show that the maximum-

entropy method based on piecewise linear basis functions has an error rate O (1/n) when
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the number of moments increases. This is better than the error rate O (ln n/n) of the famous

Ulam method [16].

Meshfree numerical methods have certain advantage over finite element methods be-

cause they only exploit nodal information. This overcomes the difficulty with mesh con-

struction, especially in high dimensional problems. In addition, such methods have a high

accuracy.

In this work, we approximate the invariant measure of a chaotic mapping by a new

maximum-entropy method, which is based on the meshfree approach and uses basis func-

tions from the local maximum-entropy approximation scheme in [1]. The local maximum-

entropy approximation scheme is a seamless bridge between finite elements and meshfree

methods. The basis functions have some similarities with the ones in the moving least

squares method [2, 3, 15]. At the same time, they demonstrate important advantages.

The basis functions satisfy partition of unity and approximate local support properties.

Therefore, the corresponding Jacobian matrix of the nonlinear equations obtained by the

maximum-entropy method is banded and positive definite. This guaranties that the non-

linear equations have a unique solution and can be solved efficiently.

The outline of this paper is as follows. Preliminaries are provided in Section 2. The

moment functions of the meshfree method are given in Section 3. In Section 4 we introduce

a maximum-entropy meshfree method and study its convergence using the results in [4–6].

Section 5 illustrates the algorithm by several examples and our conclusions are in Section 6.

2. Frobenius-Perron Operators and Maximum Entropy

The dynamics of various processes often exhibits a complicated behavior. A single solu-

tion of a dynamical system over a long period of time obtained by the asymptotic behavior

of the trajectory of the system, is generally less useful. Such long-time behavior can be

better described by estimating the probability that a domain is hit. As time approaches to

infinity, the probability approaches to a limit, which is the distribution of the trajectory.

Various mapping properties can be studied by the distribution or density. The density can

be considered as an ensemble of initial points in the phase space. In this case, instead of

considering the asymptotic behavior of individual points in the phase space, we use the

Frobenius-Perron operator to study the density evolution.

Definition 2.1. Let (X ,Σ,µ) be a σ-finite measure space. A transformation S : X → X is

called nonsingular if the condition µ(B) = 0 yields µ(S−1(B)) = 0 and measure preserving

if µ(S−1(B)) = µ(B) for all B ∈ Σ. In the later case, the measure µ is said to be invariant

under S.

Definition 2.2. A linear operator PS : L1(X )→ L1(X ) such that

∫

B

PS f (x)dx =

∫

S−1(B)

f (x)dx

for all B ∈ Σ, is called the Frobenius-Perron operator associated with S.


