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Abstract. ADI-spectral collocation methods for two-dimensional parabolic equations on

bounded and unbounded domains are studied. A spectral collocation scheme is adopted

for spatial discretisation and the Crank-Nicolson ADI scheme is used for time discreti-

sation. Numerical results show the stability and efficiency of the proposed collocation

schemes in solving high-dimensional time-dependent problems.
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1. Introduction

Spectral methods play important role in approximate solution of differential and inte-

gral equations — cf. [1, 4, 5, 7, 8, 10, 11, 15] and references therein. In particular, spectral

collocation methods are implemented in physical spaces and have notable advantages over

spectral-Galerkin methods in the case of equations with variable coefficients and nonlin-

ear problems. However, the resulting linear systems are plagued by ill-conditioning and

suitable preconditioners are needed. Significant attempts are made in the usage of non-

polynomial basis functions coming from generalised Birkhoff interpolation problems by

the technique of inverting operators on bounded and unbounded domains [17–19]. Such

bases can produce well-conditioned collocation schemes and offer optimal precondition-

ers for usual collocation schemes with an identity matrix arising in approximation of the

operator Lλ[u] = ∂
2
x u−λ2u.
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The alternating direction implicit (ADI) iterative method proposed by Peaceman and

Rachford [13] reduces a high-dimensional problem into a series of one-dimensional prob-

lems, thus cutting down computation cost and improving computational efficiency [3,16].

Combined with finite differences, finite elements and spline collocation discretisation, ADI

method became one of the most effective tools for solving high-dimensional time-dependent

problems — cf. [2,6,12,14].

The aim of this work is to introduce new ADI-spectral collocation methods for two-

dimensional parabolic equations. In particular, for spatial discretisation we use the spec-

tral collocation method with basis functions obtained by solving the generalised Birkhoff

interpolation problems and for time discretisation the Crank-Nicolson ADI scheme is em-

ployed. As the result, the collocation matrix for Lλ[u] is a unit matrix for both linear

and non-linear problems. Moreover, in comparison with the Crank-Nicolson scheme, this

ADI-spectral collocation method is more stable and more efficient.

The rest of the paper is organised as follows. In Section 2 we recall non-polynomial

basis functions based on Jacobi polynomials on bounded domains and introduce a new

ADI-spectral collocation schemes for two-dimensional parabolic equations on bounded do-

mains. Some numerical results are given to show its efficiency. In Section 3 we consider

non-polynomial basis functions based on Laguerre functions on unbounded domains and

ADI-spectral collocation schemes for two-dimensional parabolic equations on unbounded

domains. Numerical results demonstrate a high accuracy and efficiency of the methods

proposed.

2. ADI-Collocation Methods for Bounded Domains

We start with auxiliary results. Let I = (−1,1), α,β > −1. We consider the set

PN (I) = span
¦

J
(α,β)

0
(x), J

(α,β)

1
(x), . . . , J

(α,β)
N (x)
©

of the Jacobi polynomials J
(α,β)
n (x) of degree n — cf. [15]. Recall that they satisfy the

relation ∫

I

J (α,β)
n (x)J

(α,β)

n′
(x)ω(α,β)(x)d x = γ(α,β)

n δnn′ ,

where δnn′ is the Kronecker delta and

ω(α,β)(x) = (1− x)α(1+ x)β ,

γ(α,β)
n =

2α+β+1
Γ (n+α+ 1)Γ (n+ β + 1)

(2n+α+ β + 1)n!Γ (n+α+ β + 1)
.

We denote by {x j}
N
j=0

, x0 = −1, xN = 1 the Jacobi-Gauss-Lobatto (JGL) points arranged in

ascending order.

Let {h j(x)}
N
j=0

be the Lagrange interpolating polynomials at the JGL points {x j}
N
j=0

such that h j(x) ∈ PN (I) and h j(x i) = δi j , and let {l j(x)}
N−1
j=1

be the Lagrange interpolating


