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Abstract. Periodic wave solutions of (3+ 1)-dimensional potential-Yu-Toda-Sasa-Fuku-

yama (YTSF) equation are constructed. Using the bilinear form of this equation, we

chose ansatz as a combination of rational, trigonometric and hyperbolic functions. Den-

sity graphs of certain solutions in 3D and 2D situations show different cross-kink wave-

forms and new multi wave and cross-kink wave solutions. Moreover, we employ the

semi-inverse variational principle (SIVP) in order to study the solitary, bright and dark

soliton wave solutions of the YTSF equation.
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1. Introduction

Many nonlinear phenomena, which play an important role in applied sciences and en-

gineering are modeled by nonlinear partial differential equations (NPDEs). Numerous ex-

amples of such equations can be found in plasma physics, elastic media, optical fibers, fluid

dynamics, quantum mechanics, chemical physics, biotechnology, signal processing, solid

state physics, and shallow water wave theory. However, their explicit analytic solutions

are rarely available. Therefore, finding localised solutions and, more specifically, solitary

wave solutions [1,6,7,28–30,33–36,41,55], lump-type solutions [5,14–17,19,26–28,32,
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33,37,38,40,44,45,49], and also describing the interactions soliton-soliton, soliton-kink,

kink-kink [9,18,46], as well as the interaction between solitary waves, lumps [47,53] and

periodic wave solutions [2,8,31] is an interesting problem. The approaches used in these

studies include exp-function method [4, 28], homotopy perturbation technique [3], and

inverse scattering method [39].

The nonlinear (3+ 1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation has the

form

−4ux t + ux x xz + 4uxuxz + 2ux xuz + 3uy y = 0. (1.1)

It appears in fluid dynamics, plasma physics, weakly dispersive media and other physical ap-

plications. Various powerful methods for solving (3+1)-dimensional YTSF equation, such as

G’/G-expansion method [43], generalized projective Riccati equation method [51], symme-

try method [48], Korteweg-de Vries equation-based sub-equation method [42], extended

homoclinic test technique [50], homoclinic test approach and three-wave method [13] have

been considered. Applying the dependent variable transformation

η = x +ωz, u = 2(ln f )η, f = f (η, y, t), (1.2)

one can transform (1.1) into the nonlinear equation

−4uηt +ωuηηηη + 6ωuηuηη + 3uy y = 0,

and consequent application of the mapping

u= 2(ln f )η, f = f (η, y, t)

leads to the Hirota bilinear form
�

−4DηDt +ωD4
η + 3D2

y

�

f · f = 0 (1.3)

with a bilinear operator D and an unknown function f = f (x , y, t), which has to be deter-

mined later on.

Suppose the Hirota derivatives for functions f and g can be written as

3
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,

where

 = ( 1, 2, 3) = (η, y, t), ′ = ( ′1, ′2, ′3) = (η
′, y ′, t′)

and β1,β2,β3 are arbitrary nonnegative integers. The corresponding bilinear formalism for

the Eq. (1.3) is

−4 f fηt + 4 fη ft +ω
�

f fηηηη − 4 fη fηηη + 3 f 2
ηη

�

+ 3 f f y y − 3 f 2
y = 0. (1.4)

For simplicity, we change η to x , so that the Eq. (1.4) takes the form

−4 f fx t + 4 fx ft +ω
�

f fx x x − 4 fx fx x x + 3 f 2
x x

�

+ 3 f f y y − 3 f 2
y
= 0. (1.5)


