
East Asian Journal on Applied Mathematics Vol. 10, No. 4, pp. 635-658
doi: 10.4208/eajam.190420.200420 November 2020

A Stochastic Gradient Descent Approach for

Stochastic Optimal Control

Richard Archibald1, Feng Bao2,∗ and Jiongmin Yong3

1Computational Science and Mathematics Division, Oak Ridge National

Laboratory, Oak Ridge, Tennessee, USA.
2Department of Mathematics, Florida State University, Tallahassee, Florida, USA.
3Department of Mathematics, University of Central Florida, Orlando, Florida,

USA.

Received 19 April 2020; Accepted (in revised version) 20 April 2020.

Abstract. In this work, we introduce a stochastic gradient descent approach to solve
the stochastic optimal control problem through stochastic maximum principle. The mo-
tivation that drives our method is the gradient of the cost functional in the stochastic
optimal control problem is under expectation, and numerical calculation of such an ex-
pectation requires fully computation of a system of forward backward stochastic dif-
ferential equations, which is computationally expensive. By evaluating the expectation
with single-sample representation as suggested by the stochastic gradient descent type
optimisation, we could save computational efforts in solving FBSDEs and only focus on
the optimisation task which aims to determine the optimal control process.
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1. Introduction

Stochastic optimal control is an important and active research topic in applied mathe-
matics, and it has extensive applications in numerous areas, including engineering, finance
and economics, biology, public health, communication networks, to mention a few [17,36].
In the past half century, fundamental results of stochastic optimal control theory have been
established: Pontryagin type maximum principle (MP, for short) [12, 29, 30], Bellman dy-
namic programming principle (DPP, for short) [8, 9] and Hamilton-Jacobi-Bellman (HJB,
for short) equation theory [13], and linear-quadratic (LQ, for short) optimal control and
Riccati equation theory [23,34]. These are three well-recognised mile stones of stochastic
optimal control theory.
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It is known that except for some limited special cases, such as LQ problems, one-
dimensional linear state equation with convex/concave performance index (such as Merton
type problem in mathematical finance), most stochastic optimal control problems are not
explicitly solvable and therefore numerical algorithms to generate approximate solutions
are needed. One of the most widely used approaches to solve the stochastic optimal con-
trol problem is the above-mentioned DPP, mainly due to Bellman [8, 9]. The main idea of
the DPP approach is to consider a family of optimal control problems with different initial
states and times, and establish relationships among these problems through the HJB equa-
tion, which is a fully nonlinear PDE. Taking the advantage of well-established numerical
schemes for solving PDEs, many computational methods for stochastic optimal control are
developed under the DPP approach [15, 16, 22, 33]. Although all of these methods solve
the control problem successfully, due to the complexity of numerical approximations for
solutions of PDEs and the nonlinearity of the HJB equation, methods that follow the DPP
approach are computationally expensive, and even infeasible when the dimension exceeds
3, although, in recent years, some efforts have been made to pursue the relaxation of the
dimensional restriction [7]. Another disadvantage of DPP is that the optimal control prob-
lem considered could not have any state constraints. The presence of state constraints will
lead to the discontinuity of the value function, for which the suitable HJB equation theory
is not available as of today.

Another important approach to solve the stochastic optimal control problem is the
stochastic maximum principle. The classic deterministic maximum principle was first intro-
duced by Pontryagin and his students [12,30]. Stochastic version was developed by several
researchers since 1960s [10,11,21,24,29]. The central idea of maximum principle is that
any optimal control problem must satisfy an optimisation condition of a function called
the Hamiltonian, and it is much easier to optimise a Hamiltonian than solving the original
optimal control problem, which is infinite-dimensional. The MP approach for stochastic op-
timal control problems has three major advantages over the DPP approach: First, there is
no dimension restriction; Second, it allows to have some state constraints, especially some
finite dimensional terminal state constraints; Third, it allows to have random coefficients
in the state equation and/or in the performance functional (to be optimised).

The goal of this paper is to introduce a stochastic gradient descent approach to solve
stochastic optimal control problems under the stochastic maximum principle framework,
which leads to a stochastic Hamiltonian system that consists of two forward backward
stochastic differential equations (FBSDEs) [26]. In this way, solving stochastic optimal
control problems through stochastic maximum principle involves solving FBSDEs that meet
certain optimisation condition, which is typically achieved by gradient descent based ap-
proaches. It can be shown (under appropriate assumptions) that the gradient process of
the optimisation condition can be expressed by a FBSDE system, and one may also convert
the stochastic optimal control into second order FBSDEs [40]. Therefore, numerical imple-
mentation of stochastic maximum principle requires solving FBSDEs repeatedly to reach
the optimisation condition. However, since computational methods for solving FBSDEs are
not as well developed as those for solving PDEs, numerical studies for stochastic optimal
control through stochastic maximum principle are only beginning.


