
East Asian Journal on Applied Mathematics Vol. 11, No. 1, pp. 1-19
doi: 10.4208/eajam.210918.090519 February 2021

An Algebraic Multigrid Method for Eigenvalue

Problems and Its Numerical Tests

Ning Zhang1, Xiaole Han2, Yunhui He3, Hehu Xie4,5

and Chun’guang You6,∗

1Institute of Electrical Engineering, Chinese Academy of Sciences, No.6,

Beiertiao, Zhongguancun, Haidian, Beijing 100190, China.
2Institute of Applied Physics and Computational Mathematics, Beijing

100094, China.
3Department of Mathematics and Statistics, Memorial University of

Newfoundland, St. John’s, NL A1C 5S7, Canada.
4LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences, Beijing 100190, China.
5School of Mathematical Sciences, University of Chinese Academy of

Sciences, Beijing 100049, China.
6CAEP Software Center for High Performance Numerical Simulation,

Beijing 100088, China.

Received 21 September 2018; Accepted (in revised version) 9 May 2019.

Abstract. In order to solve eigenvalue problems, an algebraic multigrid method based
on a multilevel correction scheme and the algebraic multigrid method for linear equa-
tions is developed. The algebraic multigrid method setup procedure is used for con-
struction of an hierarchy and intergrid transfer operators. In this approach, large scale
eigenvalue problems are solved by algebraic multigrid smoothing steps in the hierarchy
and by low-dimensional eigenvalue problems. The efficacy and flexibility of the method
is demonstrated by a number of test examples and the global convergence, which does
not depend on the number of eigenvalues wanted, is obtained.
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1. Introduction

Algebraic multigrid (AMG) method was introduced by Brandt et al. [2] while investi-
gating multigrid algorithms for automatic algorithm design. However, its convergence has
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been proved only for symmetric positive definite M -matrices with weak diagonal domi-
nance [27] and in few other cases not involving M -matrices [16,24,36]. One of essential
problems in AMG methods is closely connected to the choice of coarse grid and intergrid
transfer operators. The problem attracted considerable attention and in addition to the
classical coarsening strategy proposed by Ruge and Stüben [27], other approaches such as
aggregation and smooth aggregation methods [25,31], compatible relaxation [5,22], and
interpolation [6] and energy-based strategies [4] have been exploited. Cleary et al. [10] car-
ried out numerical experiments to study the robustness and scalability of the AMG method.
Parallel and adaptive AMG methods have also been studied in [7,12]. The simplicity of the
AMG method leads to its application to various problems — cf. Refs. [1,11,23].

In this work, we deal with the computation of q eigenpairs (maybe not of the smallest
magnitude) for the following generalised eigenvalue problem: Find (λ( j),u( j)) ∈ R×RN , j =

1,2, . . . ,q such that (u( j))T Mu(k) = δ jk, j, k = 1,2, . . . ,q and

Au( j) = λ( j)Mu( j), j = 1,2, . . . ,q, (1.1)

where A is a real symmetric positive definite N × N matrix and M a real symmetric semi-
positive N×N matrix. Note that generalised eigenvalue problems (1.1) arise in the discreti-
sation of the elliptic partial differential equations of electromagnetics, quantum chemistry,
material, acoustic data science, and so on. These applications usually require high resolu-
tion results and, consequently, suitable discretisations of large scale algebraic eigenvalue
problems. Therefore, the construction of efficient eigensolvers with a nearly optimal com-
putational complexity is very important.

It is natural to use AMG and MG methods in eigenvalue problems [3,8,13,14,28,35,37].
A good survey of various application of the AMG methods in eigenvalue problems is pre-
sented in [17]. In these methods, an AMG strategy is adopted as the only solver in inner
iterations combined with special outer iterations, such as inverse power, shift-and-inverse,
Rayleigh-quotient, and locally optimal block preconditioned conjugate gradients. But the
application of the AMG method does not lead to a new eigensolver (outer iteration). Re-
cently, a new multilevel correction method has been proposed to solve eigenvalue prob-
lems [18–21, 26, 32–34]. The method is based on a new understanding of Aubin-Nitsche
technique in the finite element method [19]. In contrast to the methods considered in [17],
where AMG is used only as a preconditioner of the stiffness matrix, the coarse space of the
multigrid method is employed to improve the working subspace in the eigenvalue problem
solving [15]. Therefore, in this multilevel correction scheme, the solution of eigenvalue
problem on the finest level mesh can be reduced to solving a sequence of standard bound-
ary value problems on multilevel meshes and eigenvalue problems on a low-dimensional
space. Hence, the computational work and the memory required can be at an optimal level.
The above discussion shows that the application of a multigrid method to a multilevel cor-
rection scheme can provide a new eigensolver.

Motivated by the AMG method for boundary value problems and the multilevel cor-
rection method, we develop a new AMG method for eigenvalue problems. It can compute
various eigenpairs (which may be not of the smallest magnitude) and allows a free choice
of the eigensolvers for the low dimensional eigenvalue problems considered. With simple


