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Abstract. Two regularised finite difference methods for the logarithmic Klein-Gordon
equation are studied. In order to deal with the origin singularity, we employ regularised
logarithmic Klein-Gordon equations with a regularisation parameter 0 < ¢ < 1. Two
finite difference methods are applied to the regularised equations. It is proven that
the methods have the second order of accuracy both in space and time. Numerical
experiments show that the solutions of the regularised equations converge to the solution
of the initial equation as @(¢).
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1. Introduction

The logarithmic Klein-Gordon equation (LogKGE), also known as the relativistic version
of the logarithmic Schrédinger equation [15], has been introduced in the quantum field
theory by Rosen [41]. It has the form

U (X, £) — Aux, £) +u(x, t) + Au(x, ) In (Ju(x, £)|*) =0, x€R?, t>0,

1.1)

u(x,0) = ¢(x), Ju(x,0)=ry(x), x€RY,
wherex = (xq,...,x4)" € RY, d = 1,2, 3 is the spatial coordinate, t time, u := u(x, t) a real-
valued scalar field, and A shows the force of the non-linear interaction. Such non-linearities
appear in relativistic wave equations, which describe dilatonic quantum gravity [43], su-
perfluid [44], spinless particles [16, 17] and non-relativistic spinning particles moving in
an external electromagnetic field. Besides, such non-linearity effects often arise in various
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areas of physics such as inflation cosmology [14, 25], supersymmetric field theories, geo-
physics [32,37], optics [20], and nuclear physics [34]. The LogKGE (1.1) has been also
used to describe spinless particles in optics [42]. If u(-, t) € HY(R?) and 8,u(-, t) € L*(R%),
then the LogKGE (1.1) admits the energy conservation law — cf. [35,38], i.e.

E(t) = J [lu (x, O + [ Vu(x, O + (1 — Aux, t)1* + Au(x, £)[* In (Ju(x, £)|*) ] dx
Q
= E(0).

The global-in-time well-posedness of the solution to the Klein-Gordon equation with a lo-
garithmic potentials attracted considerable attention. Thus Cazenave and Haraux [22]
studied the local existence and uniqueness of solution of the Cauchy problem. Later on,
Gorka [27] used the compactness method to show the global existence of weak solutions
for one-dimensional equations in bounded domains. Bartkowski and Gérka [15] studied
the corresponding Cauchy problem on the real line R without boundary conditions. They
established the global existence of weak solutions, classical solutions and traveling waves.
Natali and Cardoso Jr. [39] used compactness arguments and a non-standard analysis to
prove the existence and uniqueness of weak solutions for an associated Cauchy problem
in the energy space. Bialynicki-Birula and Mycielski [ 18] studied the Gaussons — i.e. the
solutions, which represent the Gaussian shape [48]. Note that the interaction of Gaussons
was first considered by Makhankov et al. [36]. For the nonlinear Klein-Gordon equation
(NKGE) and the oscillatory NKGE, Cauchy problems, well-posedness and dynamical prop-
erties are investigated in [1,19,29,31,45].

Numerical methods have for the non-linear Klein-Gordon equation (NKGE) and the os-
cillatory NKGE have been also developed. Thus standard finite difference time domain
(FDTD) methods such as energy conservative, semi-implicit, explicit finite difference time
domain are considered in [8,10,23,24,47,50], a multiscale time integrator Fourier pseu-
dospectral (MTIFP) method in [4,11,12], a finite element method in [21], an exponential
wave integrator Fourier pseudospectral (EWI-FP) method in [8,9], and an asymptotic pre-
serving (AP) method in [26]. For numerical comparison of various numerical methods for
the NKGE and the oscillatory NKGE, we refer the reader to [8,13,30,40]. Stochastic con-
formal Preissman, stochastic conformal discrete gradient and stochastic conformal Euler
box schemes for damped stochastic Klein-Gordon equation are presented in [46]. Never-
theless, these methods can not be directly applied to the LogKGE equation (1.1) because
of the singularity of the logarithmic non-linearity at the origin.

Considering the logarithmic Schrédinger equation (LogSE), Bao et al. [6] employed
regularised mass and energy conservative finite difference methods in order to avoid the
blowup of the logarithmic non-linearity. Latter on, a regularised semi-implicit difference
scheme for the LogSE was studied in [5]. Li et al. [33] proposed a Crank-Nicolson-type
finite difference method for the LogSE on unbounded domains. Zhang et al. [49] devel-
oped high order diagonally Runge-Kutta schemes for the LogSE, which preserve the mass
and quadratic energy and introduced multi-symplectic integrators which conserve mass. In
order to avoid the singularity of the logarithmic function, Bao et al. [7] applied Lie-Trotter



