Application of the Nonlinear Steepest Descent Method to the Coupled Sasa-Satsuma Equation

Xianguo Geng, Mingming Chen* and Kedong Wang

School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China.

Received 22 September 2020; Accepted (in revised version) 25 September 2020.

Abstract. We use spectral analysis to reduce Cauchy problem for the coupled Sasa-Satsuma equation to a 5×5 matrix Riemann-Hilbert problem. The upper and lower triangular factorisations of the jump matrix and a decomposition of the vector-valued spectral function are given. Applying various transformations related to the Riemann-Hilbert problems and suitable decompositions of the jump contours and the nonlinear steepest descent method, we establish the long-time asymptotics of the problem.

AMS subject classifications: 35Q53, 35B40, 35Q55

Key words: Coupled Sasa-Satsuma equation, nonlinear steepest descent method, long-time asymptotics.

1. Introduction

The Sasa-Satsuma equation

$$u_t + u_{xxx} + 6|u|^2 u_x + 3u(|u|^2)_x = 0$$
(1.1)

also called the higher-order nonlinear Schrödinger equation, was originally aimed to describe the propagation of pulses in optical fiber [18, 19]. It attracted a considerable attention and has been extensively studied because of significant applications. The inverse scattering method [34] and the Hirota bilinear method [12] were used to obtain *N*-soliton solution of this equation. On the other hand, by linearising the corresponding spectral operator it was shown that the squared eigenfunctions of the Sasa-Satsuma equation can be represented as the sums of two terms, each of which is a product of Jost and adjoint Jost functions [43]. Akhmedieva *et al.* [2] studied the rogue wave spectra of the Eq. (1.1) and its presence in the spectra of chaotic wave fields produced by the modulation instability. Ling [22] obtained high order solution formulas in the determinant form by using a generalised Darboux transformation and the formal series method. In [44], finite genus solutions

^{*}Corresponding author. *Email addresses:* xggeng@zzu.edu.cn (X.G. Geng), chennmzzu@163.com (M.M. Chen), wangkdmath@163.com (K.D. Wang)

http://www.global-sci.org/eajam

of the Sasa-Satsuma hierarchy, associated with a 3 × 3 matrix spectral problem, are obtained by using asymptotic expansions of the Baker-Akhiezer function and its Riemann theta function representation [37]. The Riemann-Hilbert approach, Darboux transformation and Riccati equation are employed in investigating the integrability of multi-coupled nonlinear integrable equations and finding their exact solutions — cf. Refs. [9,11,15,20,21,27,38,41]. Let

 $\mathscr{S}(\mathbb{R}) = \left\{ f(x) \in C^{\infty}(\mathbb{R}) : \sup_{x \in \mathbb{R}} \left| x^{\alpha} \partial^{\beta} f(x) \right| < \infty, \forall \alpha, \beta \in \mathbb{N} \right\}$

be the Schwartz class. In this work, we use the nonlinear steepest descent method in order to study the long-time asymptotic behavior of the Cauchy problem for the coupled Sasa-Satsuma equation

$$u_{t} + u_{xxx} + 6(|u|^{2} + |v|^{2})u_{x} + 3u(|u|^{2} + |v|^{2})_{x} = 0,$$

$$v_{t} + v_{xxx} + 6(|u|^{2} + |v|^{2})v_{x} + 3v(|u|^{2} + |v|^{2})_{x} = 0,$$

$$u(x, 0) = u_{0}(x), \quad v(x, 0) = v_{0}(x),$$

(1.2)

where u(x,t) and v(x,t) are complex-valued potentials, $u_0(x), v_0(x) \in \mathcal{S}(\mathbb{R})$ and are generic in the sense that the below defined determinant det a(k) does not vanish in the lower complex half k-plane \mathbb{C}_- . The coupled Sasa-Satsuma equation can describe the simultaneous propagation in birefringent or two-mode fibers [32]. In [40], multi-soliton solutions of the coupled Sasa-Satsuma equation are derived by solving a Riemann-Hilbert problem. Besides, infiniteness of conserved quantities of the Eqs. (1.2) is discussed in [33], the Painlevé property in [36], and some other characteristics in [24,28,45]. The Deift-Zhou nonlinear steepest descent method introduced in [7] is aimed to study the long-time asymptotic behavior of solutions for the mKdV equation. The method was subsequently applied to a number of integrable nonlinear evolution equations associated with numerous matrix spectral problems [4–6, 8, 10, 13, 16, 17, 23, 25, 26, 29–31, 35, 42]. However, to the best of author's knowledge, the nonlinear steepest descent method has not been used in the study of long-time asymptotics for integrable equation associated with 5 × 5 matrix Lax pairs and the aim of this work is to extend the Deift-Zhou method to the Eqs. (1.2) associated with such Lax pairs. The main result of this paper is the following theorem.

Theorem 1.1. Let (u(x,t),v(x,t)) be the solution for the Cauchy problem of the coupled Sasa-Satsuma equation (1.2) with $u_0(x)$ and $v_0(x) \in \mathscr{S}(\mathbb{R})$. If x < 0 and $|x/t| \leq C$, as $t \to \infty$, then the leading asymptotics of (u(x,t),v(x,t)) has the form

$$\begin{aligned} & \left(u(x,t),v(x,t)\right) \\ &= -\frac{\nu e^{\pi\nu/2}}{\sqrt{24tk_0\pi}} \Big[\delta_A^2 e^{-\pi i/4} \Gamma(-i\nu) \big(\gamma_2(k_0),\gamma_4(k_0)\big) + \delta_A^{-2} e^{\pi i/4} \Gamma(i\nu) \big(\gamma_1^*(k_0),\gamma_3^*(k_0)\big)\Big] \\ & + \mathcal{O}\left(c(k_0)t^{-1}\log t\right), \end{aligned}$$

where C is a constant, Γ the Gamma function, $\gamma(k) = (\gamma_1(k), \gamma_2(k), \gamma_3(k), \gamma_4(k))$ the vector-