A Superconvergent Nonconforming Mixed FEM for Multi-Term Time-Fractional Mixed Diffusion and Diffusion-Wave Equations with Variable Coefficients

Huijun Fan^{1,2}, Yanmin Zhao^{2,*}, Fenling Wang², Yanhua Shi² and Yifa Tang^{3,4}

¹School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China.

²School of Science, Xuchang University, Xuchang 461000, China.

³LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

⁴School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Received 18 April 2020; Accepted (in revised version) 20 July 2020.

Abstract. An unconditionally stable fully-discrete scheme on regular and anisotropic meshes for multi-term time-fractional mixed diffusion and diffusion-wave equations (TFMDDWEs) with variable coefficients is developed. The approach is based on a non-conforming mixed finite element method (FEM) in space and classical *L*1 time-stepping method combined with the Crank-Nicolson scheme in time. Then, the unconditionally stability analysis of the fully-discrete scheme is presented. The convergence for the original variable *u* and the flux $\vec{p} = \mu(\mathbf{x})\nabla u$, respectively, in H^1 - and L^2 -norms is derived by using the relationship between the projection operator R_h and the interpolation operator I_h . Interpolation postprocessing technique is used to establish superconvergence results. Finally, numerical tests are provided to demonstrate the theoretical analysis.

AMS subject classifications: 65M10, 78A48

Key words: Nonconforming mixed FEM, multi-term time-fractional mixed diffusion and diffusionwave equations, *L*1 time-stepping method, Crank-Nicolson scheme, convergence and superconvergence.

1. Introduction

In recent years, fractional partial differential equations (FPDEs) have attracted a considerable attention. In contrast to integer-order partial differential equations, FPDEs have numerous advantages in applications, including hereditary processes in biology, physics, medicine, finance, fluid mechanics, environmental science, and water waves — cf. Refs. [7,

^{*}Corresponding author. *Email address:* zhaoym@lsec.cc.ac.cn (Y. Zhao)

9, 10, 12, 14, 18, 22, 26, 27, 54]. For example, in physics and materials one often uses time-fractional partial differential equations (TFPDEs) such as time-fractional diffusion equations (TFDEs) and time-fractional wave equations (TFWEs). Nevertheless, the use of only TFDEs or only TFWEs does not allow to describe certain processes accurately. In this paper, we focus on a nonconforming mixed FEM for a kind of TFPDEs with variable coefficients, called multi-term TFMDDWEs — viz.

$$u_{t} + P(D_{t}^{\alpha})u(\mathbf{x}, t) + P\left(D_{t}^{\beta}\right)u(\mathbf{x}, t)$$

$$-\nabla \cdot (\mu(\mathbf{x})\nabla u(\mathbf{x}, t)) = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T],$$

$$u(\mathbf{x}, t) = 0, \qquad (\mathbf{x}, t) \in \partial\Omega \times (0, T],$$

$$u(\mathbf{x}, 0) = u_{0}(\mathbf{x}), u_{t}(\mathbf{x}, 0) = \tilde{u}_{0}(\mathbf{x}), \qquad \mathbf{x} \in \Omega,$$

(1.1)

where $\Omega \subset \mathbb{R}^2$ is a bounded convex polygonal region with the boundary $\partial \Omega$, $\mathbf{x} = (x, y)$, $u_0(\mathbf{x})$, $\tilde{u}_0(\mathbf{x})$, $\mu(\mathbf{x})$, $f(\mathbf{x}, t)$ are sufficiently smooth functions and there are constants μ_1, μ_2 such $0 < \mu_1 \le \mu(\mathbf{x}) \le \mu_2$. The operators $P(D_t^{\alpha}), P(D_t^{\beta})$ are defined by

$$\begin{split} P\left(D_{t}^{\alpha}\right) &= D_{t}^{\alpha} + \sum_{i=1}^{r} l_{i} D_{t}^{\alpha_{i}}, \quad l_{i} > 0, \quad r \in \mathbb{N}^{+}, \quad 0 < \alpha_{1} < \alpha_{2} < \dots < \alpha_{r} < \alpha < 1, \\ P\left(D_{t}^{\beta}\right) &= D_{t}^{\beta} + \sum_{j=1}^{m} \omega_{j} D_{t}^{\beta_{j}}, \quad \omega_{j} > 0, \quad m \in \mathbb{N}^{+}, \quad 1 < \beta_{1} < \beta_{2} < \dots < \beta_{m} < \beta < 2, \end{split}$$

where D_t^{γ} is the left-sided Caputo fractional derivative of order γ with respect to t, i.e.

$$D_t^{\gamma} u(\mathbf{x}, t) := \begin{cases} \frac{1}{\Gamma(n-\gamma)} \int_0^t (t-s)^{n-1-\gamma} \frac{\partial^n u(\mathbf{x}, s)}{\partial s^n} ds, & \gamma \notin \mathbb{N}^+, \\ \frac{\partial^{\gamma} u(\mathbf{x}, t)}{\partial t^{\gamma}}, & \gamma \in \mathbb{N}^+ \end{cases}$$

with Γ denoting the Gamma function — cf. [22].

Analytical solutions of the most TFDEs and TFWEs are not known. Thus numerical methods for solving TFDEs and TFWEs have attracted increasing attention. For example, Ammi *et al.* [2] studied a fully discrete scheme for TFDEs based on finite difference method in time and FEM in space. In [42], a finite difference method was used to solve a modified TFDE, and the unconditional stability and an optimal-order error estimate of the method were discussed. An efficient Petrov-Galerkin spectral method for a TFDE with its error analysis was presented in [31]. Galerkin methods are a popular approach for solving TF-PDEs — e.g. Sun *et al.* [39] proposed a semi-discrete scheme with a local discontinuous Galerkin discretisation in the spatial variable. Wang and Ren [43] considered a high-order compact finite difference method and numerical analysis for a single TFDE. Meshless methods are also widely used. In particular, Kumar *et al.* [15] studied a radial basis meshless local collocation method. In order to obtain a discrete scheme for time fractional diffusion-wave equation, Liu *et al.* [25] developed a novel finite difference method. Soori and Aminataei [37] presented the stability of a sixth-order compact alternating direction implicit