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Abstract. In this paper, we introduce a weak Galerkin (WG) finite element method for

p-Laplacian problem on general polytopal mesh. The quasi-optimal error estimates of

the weak Galerkin finite element approximation are obtained. The numerical examples

confirm the theory.
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1. Introduction

We consider the following p-Laplacian problem

∇ ·
�

|∇u|p−2∇u
�

= f in Ω,

u= 0 on ∂Ω,
(1.1)

where 1< p <∞.

The p-Laplacian problem has many applications including filtration, power-law materi-

als and quasi-Newtonian flows. Finite element analysis of the p-Laplacian has been exten-

sively studied in the literature. The quasi-norm approach introduced in [2] provides sharper

error bounds for finite element solutions of the p-Laplacian problems. The quasi-norm error

estimates have been derived for different finite element approximations in [4,8,9].

The weak Galerkin finite element method is an effective and flexible numerical tech-

nique for solving partial differential equations. It is a natural extension of the standard

Galerkin finite element method where classical derivatives are substituted by weakly de-

fined derivatives on functions with discontinuities. The WG method was first introduced

in [15, 16] and then has been applied to solve various PDEs such as second order elliptic
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equations, biharmonic equations, Stokes equations, convection dominant problems, hyper-

bolic equations, and Maxwell’s equations [1,3,5,6,11–14,17–24].

In this paper, we introduce a WG finite element method for solving the p-Laplacian

problem. Error estimates are obtained in different norms. The numerical examples tested

on hybrid polygonal meshes confirm the theoretical findings.

2. Finite Element Methods

For any given polygon D ⊆ Ω, we use the standard definition of Sobolev spaces Hs(D)

with s ≥ 0. The associated inner product, norm, and semi-norm in Hs(D) are denoted by

(·, ·)s,D, ‖ · ‖s,D, and | · |s,D, 0 ≤ s, respectively. When s = 0, H0(D) coincides with the space

of square integrable functions L2(D). In this case, the subscript s is suppressed from the

notation of norm, semi-norm, and inner products. Furthermore, for D = Ω the subscript D

is also suppressed.

Let T h be a partition of a domain Ω consisting of polygons in two dimension or polyhe-

dra in three dimension satisfying a set of conditions specified in [16]. Denote by Eh the set

of all edges or flat faces in Th, and let E 0
h
= Eh\∂Ω be the set of all interior edges or flat faces.

For every element T ∈ Th, we denote by hT its diameter and mesh size h = maxT∈Th
hT

for Th.

For k ≥ 1, we define the finite element spaces

Vh :=
�

v = {v0, vb} : v|T ∈ Pk(T )× Pk(e), e ∈ ∂ T , T ∈ Th

	

,

V 0
h

:=
�

v ∈ Vh : vb = 0 on ∂Ω
	

.

For any v = {v0, vb}, the weak gradient ∇wv ∈ [Pk−1(T )]
d is defined on T by

(∇wv, ϕ)T := (v0,∇ ·ϕ)T − 〈vb,ϕ ·n〉∂ T for all ϕ ∈ [Pk−1(T )]
d . (2.1)

We introduce also the bilinear forms

s(v, w) :=
∑

T∈Th

h−1
T 〈v0 − vb, w0 −wb〉∂ T , (2.2)

a(v, w) :=
∑

T∈Th

�

|∇wv|p−2∇wv,∇ww
�

T
+ s(v, w). (2.3)

Let Q0,Qb and Qh be the locally defined L2 projections onto Pk(T ), Pk(e) and [Pk−1]
d

accordingly on each element T ∈ Th and e ∈ ∂ T . For the true solution u of (1.1), we define

Qhu as

Qhu := {Q0u,Qbu} ∈ V 0
h

.

Algorithm 2.1. A numerical approximation for (1.1) can be obtained by seeking uh =

{u0,ub} ∈ V 0
h

satisfying the following equation:

a(uh, v) = ( f , v0) for all v = {v0, vb} ∈ V 0
h

. (2.4)


