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Abstract. A linear, unconditionally energy stable, and second-order accurate numerical

scheme for the Ohta-Kawasaki equation modeling the diblock copolymer dynamics is

proposed. The temporal discretisation is based on the Crank-Nicolson temporal discreti-

sation and extrapolation. To suppress the dominance of nonlinear term, a proper stabilis-

ing parameter is used. All nonlinear parts are linearised by using the extrapolation from

the information at preceding time levels. To solve the resulting linear system, an efficient

linear multigrid algorithm is used. The unconditionally energy stability, mass conserva-

tion, and unique solvability of the scheme are analytically proved. In two-dimensional

case, we run convergence and stability tests, and consider pattern formations for various

average concentrations. Pattern formations in three-dimensional space are also studied.
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1. Introduction

A diblock copolymer generally consists of two different monomer types A and B. If tem-

perature decreases below a critical value, these monomers become incompatible and melt.

The separation phase usually generates periodic structures such as lamellae, cylinders,

spheres and so on [3]. Such a self-assembly property is widely used in nanoscale pattern-

ing [7] and was studied through experiments [4,21,23], mathematical modeling [2,5,16],

and numerical computations [1,19,20]. From a mesoscopic point of view, the phase sepa-

ration is caused by emerging A- and B-rich regions and leads to variation of density field.

The Ohta-Kawasaki model [33] used to describe the microphase separation patterns has

the form
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φ(x, t) =∆µ(x, t)−α�φ(x, t) − φ̄�,
µ(x, t) = f

�

φ(x, t)
� − ε2

∆φ(x, t),

and is considered in a domain Ω ⊂ Rd , where d = 1,2,3 is the space dimension, φ =

ρA−ρB the difference between the local volume fractions of monomer A and monomer B,

which has the value located in [-1,1], µ the chemical potential, φ̄ =
∫

Ω
φ(x, 0)dx/

∫

Ω
dx

is the average concentration, f the first derivative of the following Helmholtz free energy

functional F(φ) = 0.25(φ2 − 1)2, ε is a non-negative parameter related to the interfacial

energy, and a positive parameter α is inversely proportional to the square of the total chain

length of the copolymer. Note that if α = 0, then the Ohta-Kawasaki model changes to

the classical Cahn-Hilliard (CH) model with the properties of energy dissipation and mass

conservation. For physical and mathematical derivations of the CH model the reader can

consult [26]. The CH model has extensive applications in the phase separation of mixing

alloys [6,36], fluid dynamics [22,24], tumor growth [38,39], topology optimization [31],

etc. Since the CH model is a nonlinear and fourth-order partial differential equation, it is

hard to find its analytical solution. In the numerically study of the CH dynamics, the first-

order convex splitting scheme [15] and first-order stabilisation scheme [34] are a popular

tool. Shin et al. [35] proposed an efficient parallel multigrid algorithm for the CH equation.

Chen and Xu [8] developed a time splitting spectral element method for the CH equation.

Hofmann et al. [17] introduced an efficient immersed interface method for treating the

CH equation in arbitrary domains. Luo et al. [30] developed efficient adaptive time step

algorithms for the CH equation. Recently, with the increasing requirements of high-order

accuracy, many researchers studies various high-order energy stable schemes for the CH

model. For example, the temporal discretisations based on the Crank-Nicolson scheme

[9,29] or BDF2 scheme [10,41], fourth-order compact difference schemes [11,27], etc. If

α > 0, the nonlocal CH equation becomes the Ohta-Kawasaki model. Note that the Ohta-

Kawasaki model also has the basic properties of energy dissipation and mass conservation.

The total energy E (φ) in the Ohta-Kawasaki model can be divided into short-range energy

Es(φ) and long-range energy El(φ), which are defined by

Es(φ) =

∫

Ω

�

F(φ) +
ε2

2
|∇φ|2

�

dx,

El(φ) =
α

2

∫

Ω

∫

Ω

G(x− y)
�

φ(x)− φ̄��φ(y)− φ̄�dydx,

where G is a Green’s function. Note that if there is a variable ν and −∆ν = φ − φ̄, then

taking the periodic boundary condition, the long-range energy can be rewritten to be [13]

El(φ) =
α

2

∫

Ω

∆xν(x)

�∫

Ω

∆yG(x− y)ν(y)

�

dx=
α

2

∫

Ω

|∇νx|2dx.

Combining the short-range and long-range energy together, we have the following total

energy functional:


