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Abstract. The solutions of fractional equations with Caputo derivative often have a sin-

gularity at the initial time. Therefore, for numerical methods on uniform meshes it is dif-

ficult to achieve optimal convergence rates. To improve the convergence, Liu et al. [10]

considered a finite difference method on non-uniform meshes. Following the ideas

of [10], we introduce two more sets of non-uniform meshes and show that the cor-

responding discrete models have higher convergence rates. Besides, we apply the trape-

zoidal rule in the case of linear fractional partial differential equations. The results of

numerical experiments are consistent with the theoretical analysis.
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1. Introduction

Let 0< α < 1, Ω= (a, b), and C
0

Dα
t

denote the Caputo derivative — i.e.

C
0 Dαt u(t) =

1

Γ (1− a)

∫ t

0

u′(τ)

(t −τ)α
dτ.

In this work, we consider two equations with the Caputo fractional derivative — viz. the

nonlinear ordinary differential equation

C
0 Dαt u(t) = f (t,u(t)), t ∈ (0, T ],

u(0) = u0,
(1.1)

and the linear fractional partial differential equation

C
0 Dαt u(x , t)− p

∂ 2u

∂ x2
(x , t) + c(x)u(x , t) = f (x , t), (x , t) ∈ Ω× (0, T ],

u(x , 0) = 0, x ∈ Ω,

u(x , t) = 0, x ∈ ∂Ω, 0≤ t ≤ T,

(1.2)
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where p > 0 is a positive constant and c(x) ∈ C(Ω) a non-negative function. If f is a con-

tinuous function satisfying the Lipschitz condition with respect to the second argument on

a set G, Diethelm and Ford [4, Theorems 2.1 and 2.2] proved the unique solvability of the

Eq. (1.1).

According to [4, Lemma 2.3], the Eq. (1.1) can be reduced to the following integral

equation:

u(t) = u0 +
1

Γ (α)

∫ t

0

(t − s)α−1 f
�

s,u(s)
�

ds. (1.3)

Although analytic solutions of (1.1) can be rarely found, there are various numerical meth-

ods for its solution. Thus [1] considers an improved block-by-block method having a high

convergence order for sufficiently smooth solutions; [6] reduces (1.1) to integral equation

(1.3) and employs fractional Euler and Adams methods. The paper [8] also uses a high-

order method. All the works mentioned assume that the solution of (1.1) is sufficiently

smooth. However, the solution of the fractional order differential equations, very often

have a weak singularity at the initial time and it is difficult to obtain optimal error esti-

mates for the corresponding numerical schemes. Various methods, including introduction

of correction terms [17], graded meshes [11] and non-uniform [10] meshes, have been

proposed to improve the convergence. Assuming that C
0

Dαt u(t) is not sufficiently smooth

— cf. Assumption 1.1, Liu et al. [10] employed a finite difference discretisation on non-

uniform meshes and obtained ideal convergence rates. Following the ideas of this work, we

consider two more non-uniform meshes. Similar theoretical analysis shows that a higher

convergence order can be obtained for the numerical methods on these meshes. Numerical

experiments confirm the theoretical findings.

Assumption 1.1 (cf. Liu et al. [10]). Let 0< α < 1, 0< σ < 1, and g(t) :=C
0

Dαt u(t). Then

there is a constant C > 0 such that

|g′(t)| ≤ C tσ−1,

where g′(t) denotes the first derivatives of g(t).

The rationality of the hypothesis is explained in [10,11].

2. Numerical Methods

In this section, we consider approximation methods for the Eq. (1.3), which use finite

difference on three non-uniform meshes. The integral term is approximated by rectan-

gular and trapezoidal formulas — cf. [10]. Since the numerical expressions obtained by

using trapezoidal formula for nonlinear equations is relatively complicated, Liu et al. [10]

introduced a prediction correction method.

For a positive integers N , let 0 = t0 < t1 < · · · < tN = T be the corresponding non-

uniform meshes. We consider three discrete schemes — viz.


