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Abstract. Conjugate gradient algorithms are most commonly used to solve large scale

unconstrained optimisation problems. They are simple and do not require the compu-

tation and/or storage of the second derivative information about the objective function.

We propose a new conjugate gradient method and establish its global convergence under

suitable assumptions. Numerical examples demonstrate the efficiency and effectiveness

of our method.
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1. Introduction

There are various methods to solve the unconstrained optimisation problem

min f (x), (1.1)

where x ∈ Rn is an n dimensional real vector and f : Rn → R is a continuously differen-

tiable function bounded from below. However, when n is very large, the conjugate gradient

methods are usually preferable for solving problem (1.1) because of low memory require-

ments.

Nonlinear conjugate gradient methods for solving (1.1) start with an initial guess x0 ∈
Rn and generate a sequence {xk : k ≥ 0} of iterates by

xk+1 = xk +αkdk, (1.2)

where αk > 0 is the step length and dk is the search direction

dk =

¨

−gk, if k = 0,

−gk + βkdk−1, if k > 0.
(1.3)
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The scalar βk, referred to as the conjugate gradient (CG) parameter, is uniquely defined

for every conjugate gradient method, and gk = ∇ f (xk) is the gradient of f at xk. The

step length αk can be found by trust region methods, or by line search methods, which are

categorised as either exact or inexact. Inexact line search methods are more often used

because they require less computations. Among others, these methods include the weak

Wolfe line search
f (xk +αkdk) ≤ f (xk) +δαk gT

k dk,

gT
k+1

dk ≥ σgT
k

dk,
(1.4)

the strong Wolfe line search

f (xk +αkdk) ≤ f (xk) +δαk gT
k

dk,
�

�gT
k+1

dk

�

� ≤ σ
�

�gT
k

dk

�

� ,
(1.5)

and the generalised Wolfe conditions [25]

f (xk +αkdk) ≤ f (xk) +δαk gT
k

dk,

σgT
k

dk ≤ gT
k+1

dk ≤ −σ1 gT
k

dk,

where 0< δ < σ < 1 and σ1 ≥ 0 are constants.

Following the introduction of nonlinear conjugate gradient method by Fletcher and

Reeves (FR) [12] in 1964, various approaches have been developed to determine the con-

jugate parameter. The most popular include Polak-Ribière-Polyak [26,27], Hestenes-Stiefel

(HS) [15], Dai-Yuan (DY) [5], Liu-Storey (LS) [22] and conjugate descent (CD) [11]meth-

ods. These traditional methods can be divided into two groups:

Group I.

β FR
k
=
‖gk‖

2

‖gk−1‖2
, βDY

k
=

‖gk‖
2

dT
k−1
(gk − gk−1)

, βC D
k
= −

‖gk‖
2

dT
k−1

gk−1

.

Group II.

β PRP
k
=
‖gk‖

2 − gT
k

gk−1

‖gk−1‖2
, βHS

k
=
‖gk‖

2 − gT
k

gk−1

dT
k−1
(gk − gk−1)

, β LS
k
= −
‖gk‖

2 − gT
k

gk−1

dT
k−1

gk−1

,

where ‖ · ‖ is the Euclidean norm. Methods in Group I have strong convergence properties

but their numerical performance is not always satisfactory. On the other hand, methods

in Group II perform better numerically but do not always guarantee convergence. They

perform better numerically because for short steps, the methods in Group II tend to switch

to approximately the steepest descent direction, dk = −gk.

Therefore, over the years a lot of effort has been invested in improving the methods

mentioned, either by modifying them or by considering three-term conjugate gradient

methods. Moreover, in order to maintain good computational performance and strong


