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Abstract. A fast temporal second-order compact alternating direction implicit (ADI) dif-

ference scheme is proposed and analysed for 2D time fractional mixed diffusion-wave

equations. The time fractional operators are approximated by mixed fast L2-1σ and

fast L1-type formulas derived by using the sum-of-exponentials technique. The spatial

derivatives are approximated by the fourth-order compact difference operator, which

can be implemented by an ADI approach with relatively low computational cost. The

resulting fast algorithm is computationally efficient in long-time simulations since the

computational cost is significantly reduced. Numerical experiments confirm the effec-

tiveness of the algorithm and theoretical analysis.
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1. Introduction

The equations with nonlocal operators, such as fractional partial differential equations

(FPDEs), are often used to simulate various problems in real world applications [1, 28]

but their analytical solutions are rarely available. Therefore, efficient numerical methods

for their solution are required. The list of numerical methods for FPDEs and time FPDEs

(tFPDEs) contains L1 scheme [19,33], L1-2 scheme [12], L2-1σ scheme [2] and L2 scheme

[26]. Other numerical schemes are considered in [25, 32, 35] and [6, 17, 20] in the cases

of smooth and non-smooth solutions, respectively. The L2-1σ scheme is, probably, the

most efficient because of its second-order accuracy and excellent properties of the discrete

kernels crucial for theoretical analysis [2]. The L2-1σ formula is based on the quadratic

interpolation of the front time layer and the linear interpolation of the current time layer.

Overall, it achieves (3−α)-order accuracy for the time fractional Caputo derivative of order

α, 0< α < 1.
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It is well-known that the distinctive characteristic of fractional derivative is its intrin-

sically nonlocal property and historical dependence. Therefore, traditional numerical me-

thods are time consuming, especially in high dimensional problems. In order to overcome

this difficulties, McLean et al. [27] developed a fast summation algorithm for an evolution

equation with memory, and Ke et al. [16] applied the fast Fourier transform to block tri-

angular Toeplitz-like systems arising in the solution of tFPDEs. Another fast algorithm for

computing fractional derivatives is proposed in [3]. Recently, Jiang et al. [15] introduced

a fast L1 formula based on the sum-of-exponentials (SOEs) approximation. This reduces

the computational cost from O (N2) to O (N log N ) and the storage from O (N ) to O (log N ),

where N is the number of grid points in time interval. Besides, Yan et al. [34] proposed

a fast L2-1σ formula and investigated the stability and the convergence of the resulting

scheme for fractional sub-diffusion problems, and Gao et al. [13] developed a fast L2-1σ
algorithm for multi-term tFPDEs and proved the unconditional stability and the second-

order accuracy of the corresponding scheme.

Motivated by the results mentioned, in this work we introduce and analyse computa-

tionally efficient and stable approximations for a nonlocal model — viz. for the 2D time

fractional mixed diffusion-wave equation (tFMDWE)

C
0 D

β
t u(x , y, t) + C

0 Dα
t
u(x , y, t) =∆u(x , y, t) + f (x , y, t), (x , y) ∈ Ω, t ∈ (0, T ], (1.1)

u(x , y, 0) = φ(x , y), ut(x , y, 0) =ψ(x , y), (x , y) ∈ Ω, (1.2)

u(x , y, t) = 0, (x , y) ∈ ∂Ω, t ∈ [0, T ], (1.3)

φ(x , y)|(x ,y)∈∂ Ω = 0, ψ(x , y)|(x ,y)∈∂ Ω = 0,

where Ω := (0, L1) × (0, L2), ∂Ω is the boundary of Ω, f is a given function, and ∆u =

∂ 2
x u+∂ 2

y u. Besides, C
0 Dαt u(x , y, t) and C

0 D
β
t u(x , y, t) denote the time Caputo derivatives of

u(x , y, t) with respect to t, i.e.
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Γ (1−α)

∫ t

0
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, α ∈ (0,1),
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, β ∈ (1,2),

and we use the notation Ω̄= Ω∪ ∂Ω in what follows.

To the best of our knowledge, numerical methods for tFMDWE are not yet well stud-

ied, although various types of the Eq. (1.1) are widely used in real-life problems. Hao et

al. [14] developed an L2 formula combined with a compact difference scheme for multi-

term tFMDWE and proved its first order accuracy in time and fourth order accuracy in space.

Ezz-Eldien et al. [8] presented a numerical method based on shifted Legendre polynomials

and time-space spectral collocation method. For multi-term tFMDWEs with variable coeffi-

cients, Fan et al. [9] introduced an unconditionally stable fully-discrete scheme based on a

nonconforming mixed finite element method in space and L1-CN method. Feng et al. [10]

considered a more general version of tFMDWEs with a special time-space coupled deriva-

tive. This feature enables to consider the generalised Oldroyd-B fluid model, which is the


