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Abstract. An efficient spectrally accurate multigrid method for the Bogoliubov-de Gen-

nes excitations of the quasi-2D dipolar Bose-Einstein condensates is proposed. The wave

functions/eigenmodes are spatially discretised by the Fourier spectral method. The con-

volution-type nonlocal potentials are computed in O (N log(N)) operations with a spec-

tral accuracy by the kernel truncation method. In addition, the influence of the model

parameters on the eigenvalue distribution is studied and for various dipole orientations

and an anisotropic external potential the phase diagrams of the eigenmodes are pre-

sented. Examples verify the spectral accuracy of the method.
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1. Introduction

The Bose-Einstein condensate (BEC), known as the “fifth state of matter”, was theoret-

ically predicted by Bose and Einstein at the beginning of the last century. Since 1995, the

realisation of the BEC of dilute alkalis metal atoms opens up a new direction in the study

of ultra-cold atoms [2]. Over the past few years, physicists have been looking for a novel

type of quantum gases with dipolar interaction, acting between particles with permanent

magnetic or electric dipole moments. It is possible to explore the dipolar BEC of ultra-

cold atomic in experiments due to the remarkable discovery of 52C r atoms in 2005 [26].

A dipolar BEC with 164D y atoms, whose dipole-dipole interaction (DDI) is much stronger

than that of 52C r, was achieved in experiments in 2011 [32]. In 2012, a new dipolar BEC

of 168Er atoms has been realised at the Insbruck University [1]. These experiments show

that apart from early BECs, the DDI of dipolar BEC is anisotropic and long-range ones and
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this produces some unique phenomena. All of these have greatly promoted the theoretical

and numerical investigations of dipolar BECs.

If the temperature T is much lower than a critical temperature Tc, the evolution of

quasi-2D dipolar BEC is described by a macroscopic wave function ψ = ψ(x, t), which

satisfies the 2D Gross-Pitaevskii equation (GPE) with DDI term [7,9,43]

i∂tψ(x, t) =

�
−1

2
∆+ V (x) + β |ψ|2 +λΦ(x, t)

�
ψ(x, t), x ∈ R2, t > 0, (1.1)

Φ(x, t) =
�
U ∗ |ψ|2� =
∫

R2

U(x− x′)ρ(x′)dx′, x ∈ R2, t ≥ 0 (1.2)

and initial data

ψ(x, t = 0) =ψ0(x), x ∈ R2. (1.3)

Here, x = (x , y)T ∈ R2, t is the time, ρ(x, t) := |ψ(x, t)|2 the density, β a dimensionless

interaction constant (positive for repulsive interaction and negative for attractive interac-

tion), and Φ(x, t) is the real-valued nonlocal (long-range) DDI defined as the convolution

of the interaction kernel U(x) and a density function ρ. Besides, V (x) is a given real-valued

external trapping potential determined by the type of the system under consideration. In

most of the BEC experiments, the harmonic potential V (x) is chosen to trap the condensate

— i.e.
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1

2

�
γ2

x x2 + γ2
y y2
�

,

where γx > 0 and γy > 0 are dimensionless constants proportional to the trapping fre-

quencies in x - and y-directions, respectively. Moreover, λ is a constant characterising the

strength of DDI and U(x) is a long-range DDI potential. Here, U(x) has the form

U(x) = −3
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∫

R2

e−s2/2

p|x|2 + ε2s2
ds, x ∈ R2 (1.4)

with a given unit vector n= (n1, n2, n3)
T , i.e. ‖n‖l2 =
q

n2
1
+ n2
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3
= 1, representing the

3D dipole axis [7], and

∇⊥ = (∂x ,∂y)
T , n⊥ = (n1, n2)

T , ∂n⊥ = n⊥ · ∇⊥, ∂n⊥n⊥ = ∂n⊥(∂n⊥).

As the confinement gets stronger and by a formal analysis — c.f. Refs. [9,21], we have

U → U∞(x) := −3

2
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|x| , as ε→ 0. (1.5)

The quasi-2D GPE (1.1)-(1.3) conserves two important quantities — viz. the total mass

(or normalisation) of the wave function

N
�
ψ(x, t)
�

:= ‖ψ(x, t)‖2 =
∫
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|ψ(x, t)|2dx ≡ N
�
ψ(x, 0)
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