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Abstract. The iterative convergence of the upwind compact finite difference scheme

for the artificial compressibility method [A. Shah et al., A third-order upwind compact

scheme on curvilinear meshes for the incompressible Navier-Stokes equations, Com-

mun. Comput. Phys. 5 (2009)] is studied. It turns out that for steady flows in enclosed

domains the residuals do not converge to machine zero. The reason is a non-uniqueness

of the calculated pressure in the case where Neumann boundary conditions for the pres-

sure are imposed on all boundaries. The problem can be fixed by modifying the deriva-

tives of mass flux obtained from the upwind compact scheme to satisfy the global mass

conservation constraint. Numerical tests show that with this modification the scheme

converges to machine zero with the original third-order accuracy.
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1. Introduction

The artificial compressibility (AC) method was proposed by Chorin [6] for the numer-

ical solution of the incompressible Navier-Stokes equations. In this method, a pseudo-

time derivative of pressure is added to the continuity equation, so that the original elliptic-

parabolic system of equations become hyperbolic in time. After that, various well-establish-

ed compressible flow numerical algorithms can be used in the AC method. The AC method

was initially used to compute steady flows with the approximate factorisation algorithms

[20, 32]. Later it was extended to unsteady incompressible flows [2, 34, 41] by using the
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dual time stepping technique [5, 16]. Meanwhile, high-resolution total variation dimin-

ishing (TVD) schemes [15] and high-order flux difference splitting (FDS)-based upwind

schemes [33–35] were introduced in conjunction with the lower-upper symmetric Gauss-

Seidel (LU-SGS) scheme [44], line Gauss-Seidel relaxation scheme [33,34] and generalised

minimal residual (GMRES) algorithm [13, 31]. The influence of the artificial pressure

wave of the hyperbolic system on convergence of the AC method was analysed by Kwak et

al. [20,21]. Recently, high-order discontinuous Galerkin schemes have been also incorpo-

rated in this method [48].

Compact finite difference schemes attracted substantial attention since they have lower

truncation errors and higher spectral resolution than non-compact ones [22]. For com-

pressible flows such methods are often employed in combination with weighted essen-

tially non-oscillatory (WENO) schemes [18] in order to deal with shock waves. Thus

Deng [7] developed a WENO reconstruction-based compact nonlinear scheme, Jiang et

al. [17] considered a WENO-weighted compact difference scheme, and Pirozzoli [27] and

Ren et al. [28]worked with conservative compact reconstruction-WENO hybrid schemes, to

mention a few. These methods have better accuracy and resolution than stand-alone WENO

schemes. For incompressible flows, the solutions of the corresponding equations have no

strong discontinuities, so that any linearly stable compact scheme can be exploited. In par-

ticular, central compact schemes with implicit central filtering [43] are applied to the AC

method [8, 29, 47]. The FDS scheme [30] is a full wave approximate Riemann solver for

the compressible Euler equations and can capture shear waves accurately. Following the

successful application of FDS-based high-order upwind schemes in incompressible flow sim-

ulations [33–35], Shah et al. [37, 38] developed FDS-based third- and fifth-order upwind

compact schemes, and demonstrated their superior spectral resolution over the FDS-based

non-compact upwind schemes of same order [39].

However, the authors of this work discovered that although for steady flows in enclosed

domain the residuals of the conservative non-compact upwind schemes of [33–35] converge

to machine zero, the nonconservative third-order upwind compact schemes of [37, 38]

converge to a number much greater than machine zero. In monitoring the convergence

history of the flow variables of the scheme [37] for steady flows in enclosed domain, we

noted that the velocity increments converge to machine zero but the pressure increments

converge to a number much greater than machine zero. The reason is the non-uniqueness

of the pressure in enclosed domains, and we emphasize that this has an adverse impact on

the convergence of the pressure time derivative term in the continuity equation of the AC

method. In order to fix the problem, we use modified numerical derivatives of the mass

flux to satisfy the global mass conservation constraint. Numerical examples show that the

residuals of the modified upwind compact scheme for steady flows in enclosed domain

converge to machine zero with the third-order accuracy.

The rest of the paper is organised as follows. Section 2 reviews the governing equations

and FDS-based third-order upwind compact scheme. The convergence of this scheme for

steady flows is tested and analysed in Section 3, and a modification of the residual stall

is suggested in Section 4. Benchmark examples in Section 5 show the effectiveness of the

modified scheme. Finally, our conclusion is given in Section 6.


