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Abstract. The work deals with an optimal control problem for a reaction-diffusion sys-

tem comprising two competing populations, one of which is a prey for a third population.

In order to maximise the total density of these populations, the existence and uniqueness

of a positive strong solution of a controlled system are studied. After that, the techniques

of minimal sequences is used in order to show the existence of an optimal solution. The

first and second order optimality conditions are also constructed.
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1. Introduction

Optimal control problems attract more and more attention. Here, we study a control

problem related to three populations reaction-diffusion systems with homogeneous Neu-

mann boundary conditions — viz.
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∂ n
= 0 on ΣT ,

u(x , 0) = u0(x), v(x , 0) = v0(x), w(x , 0) = w0(x) in Ω,
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where QT = Ω × (0, T ), T > 0 is a fixed time, Ω ⊂ Rd , d ≤ 3 a bounded domain with

the boundary ∂Ω from the class C2+σ, σ > 0, and n the outward unit normal vector

on ∂Ω. Besides, ∆ is the Laplace operator, d1, d2, d3 > 0 the diffusion coefficients, and

a, b, c,α1,α2,β1 and β2 are positive constants. We also note that u and v stand for the

densities of competing populations, and w represents the density of the predators preying

on u. The functions u, v and w depend on the spatial position x ∈ Ω and time t ∈ [0, T ],

and the Neumann boundary conditions

∂ u

∂ n
=
∂ v

∂ n
=
∂ w

∂ n
= 0

are imposed on ΣT = ∂Ω × (0, T ). The initial conditions for all three populations are

assumed to be

u0(x)> 0, v0(x)> 0, w0(x)> 0.

Partial differential equations are a key research topic in mathematics [12–14] and many

of them are related to our work on optimal control problems. Thus optimal control issues

for the Lotka-Volterra system of ordinary differential equations and for three-population

system with diffusion are studied by Apreutesei in [1] and [3], respectively. Optimal con-

trol strategies for systems modelled by reaction-diffusion equations are discussed in [2,5].

Apreutesei [4] also considered optimal control of a plant, predator and pest system. Ding et

al. [9] investigated optimal control strategy of a nutrient-phytoplankton-zooplankton-fish

system. Barthel et al. [6] discussed optimal boundary control of a system of reaction diffu-

sion equations. Optimal control strategies for a model with general Holling type functional

response is studied in [21]. It differs from the classical law and the growth of predator

population gradually reduces. Xiang and Liu, [20] considered an inverse problem of SIS

epidemic reaction-diffusion model. Optimal control strategies in population dynamics can

be also found in [8,10,11,17,18,22,23].

This work is devoted to an optimal control problem for a reaction-diffusion system. Our

goal is to maximise the total density of three populations. In contrast to the existing studies,

which are mainly focused on ordinary differential equations, we also take diffusion into

account. Besides, an additional control term h is introduced to two competing populations,

so that the corresponding analysis is more involved. This affects competing populations u

and v. For the sake of simplicity, we assume that this control is to enhance their densities as

a stimulant, and the enhancement is proportional to the population densities. The control

term h varies in the interval [0,1], so that the admissible control set can be expressed as

Uad =
�
h ∈ L2(QT ) : 0≤ h(x , t) ≤ 1 a.e. on QT

	
.

Our goal is to maximise the weighted density of three populations in QT and the weighted

density in Ω at a time T . Set p = (u, v, w). Consider the cost function

inf
h∈Uad

J(p,h) = −

∫

QT

(γ1u+ γ2v + γ3w) (x , t)d xd t

−

∫

Ω

(δ1u+δ2v +δ3w) (x , T )d x , (1.1)


