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Abstract. The hard thresholding regularised logistic regression in high dimensions with

larger number of features than samples is considered. The sharp oracle inequality for

the global solution is established. If the target signal is detectable, it is proven that with

a high probability the estimated and true supports coincide. Starting with the KKT condi-

tion, we introduce the primal and dual active sets algorithm for fitting and also consider

a sequential version of this algorithm with a warm-start strategy. Simulations and a real

data analysis show that SPDAS outperforms LASSO, MCP and SCAD methods in terms

of computational efficiency, estimation accuracy, support recovery and classification.
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1. Introduction

Let y ∈ {0,1} be the binary response variable, x ∈ Rp the covariate vector and β∗ ∈ Rp

the underlying regression coefficients vector in the logistic regression model

P
�

y = 1|x
�
=

exp
�
xTβ∗
�

1+ exp
�
xTβ∗
� ,

cf. [10, 11]. Logistic regression is an important generalised linear model (GLM) widely

used in statistics, machine learning, social and medical sciences, finance industry and so

on. In this work, we focus on the variable estimation and selection in high-dimensional

and sparse settings — i.e. if n≪ p and ‖β∗‖0 < n, where n is the sample size and ‖β∗‖0
the cardinality of the set of nonzero elements in β∗.
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To obtain the estimator of β∗ in high-dimensional and sparse cases, many regularised

methods have been proposed. In particular, works [13,17] extend the least absolute shrink-

age and selection operator method (LASSO) [16] from the linear regression to GLMs. Fried-

man et al. [4] used the coordinate descent to solve the elastic net penalised GLMs [21]. In

Refs. [8, 19], the path following proximal gradient descent method [12] has been applied

to variable estimation in GLMs with smoothly clipped absolute deviation (SCAD) and min-

imax concave (MC) penalties [3]. Besides, Li et al. [7] introduced a DC proximal Newton

(DCPN) method for GLMs with sparsity promoting non-convex penalties such as MC and

SCAD ones.

In this paper, we consider the hard thresholding regulariser

ρλ(t) =






−t2

2
+λ|t|, if |t| < λ,

λ2

2
, if |t| ≥ λ,

(1.1)

where a non-convex and non-smooth function ρλ admits the hard thresholding operator

(3.2), cf. [1]. The hard thresholding regularised estimator leads to the problem

min
β
Ln(β) +

p∑

i=1

ρλ(βi), (1.2)

where

Ln(β) =
1

n

n∑

i=1

log
�
1+ exp
�
xT

i β
��
−

YT Xβ

n

is the negative logarithmic likelihood function and λ > 0 the tuning parameter.

The ideas of [8, 20] can be used to determine the sharp upper bound for the errors

of the estimator (1.2). Nevertheless, since (1.2) is a non-convex non-smooth optimisation

problem, it is difficult to develop a stable efficient computational algorithm for its solution,

especially in high-dimensional and sparse settings. Inspired by [5,15], we construct a pri-

mal and dual active set (PDAS) algorithm for solving the minimisation problem (1.2). Our

approach is motivated by the KKT conditions of the hard thresholding regularised problem.

In PDAS, the active set of a relatively small size is first determined via summation of

primal and dual variables generated by the previous iteration. The primal variable is then

updated by solving a minimisation problem on the active set, whereas the dual variable

is updated by using the gradient information. Further, in order to make PDAS more ap-

plicable, we consider a sequential version of PDAS (SPDAS), which combines PDAS with

a continuation strategy on the regularisation parameter λ. Thus, by SPDAS algorithm we

generate a solution path with a different regularisation parameter λ. Then we can chose

one data-driven method such as the modified Bayesian information criteria [6, 18] or the

voting method [5] to chose the optimal solution.

The main results of this work are as follows. Using regularity assumptions on the loss

function and the covariance matrix, we establish a sharp oracle inequality of the global


