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Optimisation of Biological Transport Networks
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Abstract. Transport networks such as blood vessel systems and leaf venation are uni-

versally required for large-size living organisms in order to overcome the low efficiency

of the diffusion in large scale mass transportation. Despite substantial differences in liv-

ing organisms, such networks have many common patterns — viz. biological transport

networks are made up of tubes and flows in tubes deliver target substances. Besides,

these networks maintain a tree-like backbone attached with small loops. Experimen-

tal and mathematical studies show many similarities in biological mechanisms, which

drive structural optimisation in biological transport networks. It is worth noting that

the structural optimisation of transport networks in living organisms is achieved in the

sense of energy cost as a consequence of natural selection. In this review, we recall the

exploration history and show mathematical structures used in the design of biological

transport networks.
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1. Introduction

Transport networks play important role in natural and industrial systems. Rivers carry

water to oceans and lakes, highways and railways transport people and goods all around

the world, telecommunications networks transmit information, and blood vessels and leaf

veins transport substances in living organisms.

However, the transport capacity of various networks is limited by the flow processing

capacity of network nodes (aviation networks), by the conductance and width of network

edges (rivers and blood circulation systems), or by both factors mentioned (internet). In

general, the conservation of matter leads to constraints on the flow in different edges.

If there is no node capacity, the flow constraints are instantaneously satisfied. Otherwise,

a delay is allowed to satisfy the flow constraints. For information networks, such constraints

are weakened greatly by a possible information replication on nodes. The limitations in

transport capacity and constraints in flows determine the main geometrical and topological
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characteristics of the networks — e.g. biological transport networks usually contain various

loops while maintaining an impression of a tree-like backbone [23, 29]. Here, we review

the exploration of the designing principle of biological transport networks.

The first breakthrough in biological transport networks was the experimental finding

of an approximate cubic law in blood vessel bifurcation — viz. D3 = D3
l
+ D3

r
, where

D, Dl , and Dr are the radii of the parent vessel and its left and right daughter vessels,

respectively [71]. This law is now referred to as Murray’s law due to Murray’s deep insight

between the bifurcation relation and the optimisation principle in energy cost. According

to Murray explanations, this is a consequence of another cubic relation between blood flow

Q and vessel radius D, Q∝ D3. In Murray’s theory, the latter cubic relation is obtained by

the optimisation of the total energy cost – i.e. the fluidic cost in driving blood flow in the

vessel and the biological cost in metabolism and material, which includes the material cost

in producing blood cells and building the blood vessel wall and the energy consumption

in functioning of these cells [54]. Murray’s law is also observed in plant vessels and leaf

venation [49].

Murray’s law provides the deep understanding of the local structure of biological net-

works. Following the idea of energy-cost optimisation, mathematical models have also

been used to understand the geometrical and topological characteristics of an entire bio-

logical transport network. For different transport networks, a power law relation Em = Cγ

can be generally introduced for the metabolic and material cost Em and flow resistance C .

This relation is used to show that for fixed flow sources (sinks) a network has a tree-like

structure if γ < 1 [5,6,14]. In general, there are many loops attached to the tree-like back-

bone in biological transport networks [9, 11, 29, 34, 55]. Animals and plants can benefit

from such loop structures in various ways. By incorporating the risk tolerance in network

damages [29] or the effects of fluctuating flow distributions [9,29,30], optimal structures

are shown to be loopy networks while maintaining a major structure of a tree-like back-

bone. Such a structure is also believed to afford great benefits to living systems for their

mechanical robustness [34].

Optimisation of the energy cost can be viewed as the consequence of natural selection.

Highly efficient and robust transport networks, which optimise the energy cost while satis-

fying tissue demanding, bring tremendous competitive advantages to species. Nevertheless,

in order to achieve such an optimisation, life systems have to find special mechanisms such

as an adaptation dynamics driven by specific stimuli (which means signals sensed by cells

and modulate their cellular dynamics).

The Murray’s law also suggests that the wall shear stress, which is proportional to Q/D3,

is a constant in the entire circulation system at optimal state. This implies that the wall

shear stress should be an important stimulus that drives blood vessel adaptation to achieve

the optimisation of the network structure. Indeed, experimental studies verified that the

wall shear stress in a circulation system lies in a relatively narrow range [19, 23, 25, 58–

60]. Further studies have shown that endothelial cells, which form the inner layer blood

vessel walls, can really sense the wall shear stress [31–33]. The wall shear stress acts as

a key stimulus for both blood flow regulation in the short term response and blood vessel

adaptation in the long term response [19,23,25,31–33,58–60].


