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Abstract. Deep learning method for solving elliptic hemivariational inequalities is con-

structed. Using a variational formulation of the corresponding inequality, we reduce it to

an unconstrained expectation minimization problem and solve the last one by a stochas-

tic optimization algorithm. The method is applied to a frictional bilateral contact prob-

lem and to a frictionless normal compliance contact problem. Numerical experiments

show that for fine meshes, the method approximates the solution with accuracy similar

to the virtual element method. Besides, the use of local adaptive activation functions

improves accuracy and has almost the same computational cost.
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1. Introduction

With the advance of deep learning technique originated in computer science, consider-

able efforts are made to use this approach in other areas, including numerical methods for

partial differential equations (PDEs). Neural network-based numerical methods appeared

in 1990s [29] and have been significantly improved recently [7, 8, 10, 25, 40, 43, 44, 47].

In those methods, deep neural networks (DNNs) are used in order to parameterize the

PDE solution by the parameters defined by an optimization problem related to the PDE

under consideration. The key to the success of neural networks-based methods lies in the

universal approximation property [2, 9, 18, 20, 42]. It is well known that deep neural net-

work is a powerful tool for solving high-dimensional PDEs — cf. [12, 13, 26, 36]. We are

sure that this is also a valuable strategy to attack low-dimensional complicated problems

in science and engineering, which are expensive to solve by traditional numerical meth-

ods. Following these ideas, Huang et al. [21] proposed deep learning-based methods for

variational inequalities. This approach was supported by other authors [30, 41]. How-
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ever, to the best of our knowledge, there are no similar works on hemivariational inequal-

ities (HVIs). We recall that HVIs, introduced in 1983 by Panagiotopoulos [38] in connec-

tion with engineering applications, have been rigorously studied [14,37,39] and are now

widely used in contact mechanics. In practice, the solutions to elliptic HVIs are only avail-

able numerically. There are various numerical methods to approximate the solutions of

elliptic HVIs — cf. [11, 15, 17, 46]. However, the discretization often leads to non-convex

and non-smooth optimization problems, the solution of which is challenging. The itera-

tive convexification [35, 45] is a popular method for solving the non-convex optimization

problems mentioned. It consists in construction and solution of a number of convex prob-

lems approaching the original non-convex problem. Many HVIs related contact problems

such as the frictional bilateral contact problem, the frictionless normal compliance contact

problem and the frictionless unilateral contact problem have been solved by the method

mentioned [16].

In addition to the iterative convexification approach, one can use the proximal bundle

method [34], the bundle Newton method [33], and the primal-dual active-set algorithm

[28]. Recently, Feng et al. [11] used the double bundle method [24] to solve discrete non-

convex and non-smooth problems arising in the discretization of HVIs. Nevertheless, the

numerical methods mentioned are rather difficult to implement or they are computationally

expensive when applied to the corresponding discrete problems.

Here, we consider a deep learning method for an elliptic HVI. The method is based

on an equivalent variational formulation of the problem [14]. In particular, the solution

space of the HVI is parameterized by DNNs and an approximation is found by minimizing

an unconstrained expectation minimization problem. The latter can be solved by stochas-

tic gradient descent methods [3]. The unconstrained expectation minimization problem

is reformulated by using the variational principle for HVIs. Therefore, the resulting deep

learning optimization problem has a clear physical meaning. As applications, we employ

the deep learning method to a frictional bilateral contact problem and a frictionless con-

tact problem with normal compliance. In addition, we use a fixed activation function and

a local adaptive activation function [23] to solve HVIs in numerical simulation. Numerical

experiments also show that the deep learning method has the same accuracy as traditional

numerical methods on fine grids. Besides, the use of local adaptive activation functions

gives a better accuracy than fixed activation functions, under comparable computational

cost. Finally, it is worth noting that the method is suitable for engineering applications and

can be easily programmed in Python.

The rest of this paper is organized as follows. In Section 2, an elliptic HVI and its

applications in contact mechanics are introduced. Section 3 provides a detailed description

of the deep learning method for HVIs. In Section 4, two numerical examples demonstrate

the efficiency of the deep learning methods. Finally, we summarize our work with a short

conclusion in Section 5.

2. Elliptic Hemivariational Inequality and Applications

Let X be a real Banach space with norm ‖ · ‖X and X ∗ the dual of X with norm ‖ · ‖X ∗ .


